Well-quasiorders and Kruskal's Tree Theorem

Andrew Slattery

School of Mathematics University of Leeds

PG Logic Seminar, 2021

Prerequisites

Some knowledge of order theory is assumed, including the basics of partial orders, total orders and well-orders, along with the theory of countable ordinals up to ε_0 . I also assume some knowledge of combinatorics, including the statement of Ramsey's theorem for k-partitions of $\mathbb{N}^{(2)}$.

Initial Definitions and Notation

Definition 1 A <u>quasiordering</u> (or a <u>preordering</u>) \leq on a set X is a reflexive and transitive relation on X. We call a set X equipped with such a relation a <u>quasiorder</u> (or a <u>preorder</u>). We will write a < b (and say 'a is <u>strictly less</u> than b') if $a \leq b$ and $b \leq a$. We will also write $a \leq b$ (and say 'a and b are incomparable') if neither $a \leq b$ nor $b \leq a$.

Examples

Any partial order, total order or well-order is a quasiorder. Various contexts with a notion of 'embedding' form quasiorders. For example, we might take:

- (some set of) groups, with $G \le H$ exactly when there is an injective group homomorphism $G \rightarrow H$,
- (some set of) topological spaces, with injective continuous maps,
- (some set of) infinite graphs, with the subgraph relation, or the graph minor relation.

Well-foundedness

Definition 2

- Given a set X, a quasiorder ≤ on X is <u>well-founded</u> if every subset A ⊆ X has a minimal element with respect to ≤. That is, for each A ⊆ X there exists an a ∈ A such that for every b ∈ A, b ≤ a.
- ► Equivalently (given the Axiom of Dependent Choice, which I will assume), the relation is well-founded if it contains no countably-infinite descending chain x₀ > x₁ > x₂ > ... in X.

However, well-foundedness of given quasiorders need not be preserved under lifting operations. For example, $(\mathbb{N}, |)$ is a well-founded quasiorder, but the sequence

 $P_2 > P_3 > P_5 > \dots$

where $P_n := \{p \ge n : p \text{ prime}\}$ is an infinite descending sequence in $P(\mathbb{N})$. So, when is the powerset of a quasiorder well-founded?

Goodness

Take a quasiorder X and consider sequences $\bar{a} : \mathbb{N} \to X$.

- A pair (a_i, a_j) is called good if i < j in \mathbb{N} and $a_i \leq a_j$ in X.
- The whole sequence is called good if it contains a good pair. Otherwise it is <u>bad</u>.

This allows us to define a stronger (as we shall see) notion than well-foundedness for our quasiorders.

Definition 3

A well-quasiorder X is a quasiorder for which every sequence $\bar{a}: \mathbb{N} \to X$ is good. (Henceforth we write 'wqo' for 'well-quasiorder'.)

Examples

► The natural numbers (N, ≤) with the usual order are a wqo — every well-order is wqo. The integers (Z, ≤) are not wqo, as the sequence of negative integers

$$0, -1, -2, -3, \dots$$

is bad, and the naturals $(\mathbb{N},|)$ under divisibility are not wqo, as the sequence of primes

$$2, 3, 5, 7, 11, \dots$$

is bad. (These are in essence the only types of bad sequence; see Proposition 1).

- ▶ if (X, ≤) is a wqo, then the finite product X^k with componentwise ordering is also wqo (See Proposition 4).
- If X is a finite set, the set X* of finite strings of elements of X ordered by a ≤ b if and only if a is a subsequence of b (for example, X = {0,1}, a = 011, b = 01001) is a wqo (this is called Higman's Lemma). This is a special case of Kruskal's Tree Theorem, which states that if Q is a wqo, then so is the set T(Q) of finite trees labelled with elements of Q, under 'homeomorphic embedding'.

Characterising Well-quasiorders

Proposition 1

Let A be a set with quasiorder \leq . Then the following are equivalent:

- (i) A is a well-quasiordering.
- (ii) A contains no infinite strictly-decreasing sequence, nor an infinite sequence of pairwise-incomparable elements.
- (iii) Every sequence ā : N → A contains a non-decreasing subsequence ā_u.

We will show (i) \implies (ii) \implies (iii) \implies (i).

- Let ā : N → A be a sequence in A. By (i), ā is good, so it contains a good pair a_i ≤ a_j. Then because of this pair, ā is neither an strictly-decreasing sequence, nor a sequence of pairwise-incomparable elements.
- Given a sequence ā: N → A, partition the two-sets {i < j} into three parts P₁, P₂, P₃, given respectively by the trichotomous conditions a_i ≤ a_j, a_i > a_j and a_i ≸ a_j. Then Ramsey's theorem gives us a infinite monochromatic subset of N.

But by (ii) this subset cannot be monochromatic in P_2 , nor in P_3 , and so it must be monochromatic in P_1 . This is our non-decreasing subsequence \bar{a}_u .

▶ Let $\bar{a} : \mathbb{N} \to A$ be a sequence in A. By (iii), it contains a non-decreasing subsequence \bar{a}_u . In particular, $a_{u(0)} \le a_{u(1)}$, and this is a good pair, so \bar{a} is a good sequence.

The Powerset Condition

Proposition 2 Let X be a set with quasiorder \leq . Then X is a wqo if and only if the lift P(X) with the relation

$$A \leq B \iff \forall a \in A \ \exists b \in B : a \leq b$$

is well-founded.

In both directions we prove the contrapositive.

Suppose X is not wqo, so we have a bad sequence ā : N → X. Define

$$A_i := \{a_j : j \ge i\}.$$

Then

$$A_0 > A_1 > A_2 > \dots$$

is a strictly-decreasing sequence in P(X) — if $A_i \leq A_j$ for some i < j, there is some $k \geq j > i$ such that $a_i \leq a_k$, contradicting the fact that \bar{a} is bad. ► Conversely, suppose P(X) is not well-founded. Then we have a strictly-decreasing chain of subsets

$$A_0 > A_1 > A_2 > \dots;$$

take for each *i* some $a_i \in A_i$ such that $a_i \not\leq b$ for all $b \in A_{i+1}$. Then we claim the sequence (a_i) is bad. Indeed, let i < j. Then since $A_j \leq A_{i+1}$ there is some $c \in A_{i+1}$ with $a_j \leq b$. Then since by construction $a_i \not\leq c$, we must have $a_i \not\leq a_j$. Hence X is wqo.

The Minimal Bad Sequence

Definition 4 Let X be a well-founded quasiorder which is not a wqo. A bad sequence $\bar{a} : \mathbb{N} \to X$ is a minimal bad sequence (an MBS) if for each $n \in \mathbb{N}$, a_n is minimal from the set

 $\{a \in X : \text{there is a bad sequence whose first } n \text{ terms are } a_0, ..., a_{n-1}, a\}.$

We would like to use this notion in some sense like a 'minimal counterexample' in induction proofs. That is, we want to say that every sequence which is 'below' an MBS must be a good sequence.

The Minimal Bad Sequence Lemma

Lemma 3 Let X be a well-founded quasiorder which is not wqo, and let $\bar{a}: \mathbb{N} \to X$ be an MBS. Then the subset

$$Y := \{y \in X : y < a_n \text{ for some } n \in \mathbb{N}\}$$

is wqo.

Let $\overline{b} : \mathbb{N} \to X$ be an arbitrary bad sequence in X. Suppose for the sake of contradiction that every element of \overline{b} is in Y; that is, suppose that for all *i* there is *n* such that $b_i < a_n$. Take a pair (i, n) with least possible *n* and consider the sequence

$$a_0, a_1, \dots, a_{n-1}, b_i, b_{i+1}, b_{i+2}, \dots$$

— it cannot be bad, or else a_n is not minimal among bad continuations of the initial segment $(a_0, a_1, ..., a_{n-1})$. Thus it contains a good pair, and this must be of the form $a_j \leq b_k$, since \bar{a} and \bar{b} are both bad.

But since $b_k \in Y$, there is some I with $b_k < a_I \implies a_j < a_I$, and by minimality of n we have $j < n \le I$. So in fact $a_j < a_I$ is a good pair, contradicting badness of \bar{a} . Thus \bar{b} was not in Y, and so every sequence in Y is good. Hence Y is wqo.

Well-quasiorders from well-quasiorders

Proposition 4 Let A and B be wqo. Then the following are also wqo: (i) the product $A \times B$, given the ordering

$$(a,b) \leq (a',b') \iff a \leq b \wedge a' \leq b'.$$

(ii) the set $A^{(<\omega)}$ of finite subsets of A, given the ordering

 $B \leq C \iff \exists f : B \rightarrow C$ injective and non-decreasing.

We will show (i), and use this result to prove (ii).

(i) Let (ā, b): N → A × B be a sequence in A × B, with projections ā: N → A and b: N → B.
By Lemma 1, there is a non-decreasing subsequence ā_u of ā, since A is a wqo. Since B is also a wqo, the corresponding subsequence b_u of b has a good pair b_{u(i)} ≤ b_{u(j)}. Then (a_{u(i)}, b_{u(i)}) ≤ (a_{u(j)}, b_{u(j)}) and so (ā, b) is good. So A × B is a wqo.

(ii) Note that the relation ≤ on A^(<ω) is reflexive (take f = 1_B : B → B) and transitive (since the composition of non-decreasing functions is itself non-decreasing). Moreover, it is well-founded: take a subset A ⊆ A^(<ω), and let n := min{|B| : B ∈ A}. Since B ≤ C ⇒ |B| ≤ |C|, a minimal element among the finitely-many elements of size n is minimal in A.

Hence either $A^{(<\omega)}$ is a wqo or we can take an MBS $\overline{B} : \mathbb{N} \to A^{(<\omega)}$. As the empty set is the minimum element in $A^{(<\omega)}$, none of the B_i is empty; pick $b_i \in B_i$ for each i, and write $C_i := B_i \setminus \{b_i\}$. Note that $C_i < B_i$ (the inclusion is injective and non-decreasing). Then by the MBS Lemma, the set

$$\mathcal{X} := \{C_i \mid i \in \mathbb{N}\} \subseteq A^{(<\omega)}$$

is wqo.

Now, we know by (i) that $A \times \mathcal{X}$ is a wqo, and thus that the sequence $(\overline{b}, \overline{C})$ is good. But a good pair $(b_i, C_i) \leq (b_j, C_j)$ yields a good pair $B_i \leq B_j$ in \overline{B} , contradicting the fact that \overline{B} is a bad sequence.

Hence $A^{(<\omega)}$ is a wqo.

Trees and homeomorphic embedding

Basic definitions and notation

One structure to which we can lift a quasiorder is the finite (rooted) tree, which here we can consider as a generalisation of the finite list.

Definition 5

A finite (unlabelled) <u>tree</u> is a finite partially-ordered set t, whose elements are called <u>vertices</u>, such that

- t has a minimum vertex r = root(t), called the <u>root</u> of t, and
- ▶ for every b ∈ t, the set of vertices below b, {a : a < b} (the under-set of b), is linearly-ordered.</p>

In this way, we might say that trees 'look like lists when looking down'.

Well-quasiorders

Trees and homeomorphic embedding

Figure 1: A tree, in which $a \le b$ if there is a path upwards from a to b. Here the blue vertex has its under-set highlighted in red. - Trees and homeomorphic embedding

We say 'a is the parent of b' if $a = \max\{x : x < b\}$ (which exists because the set is a finite linear order), and we say that 'b is a child of a' if a is the parent of b (see Figure 2). Note that a vertex can have multiple children.

Figure 2: A vertex in blue: its children are in green, and its parent is in red.

Trees and homeomorphic embedding

For a vertex $b \in t$, the <u>branch at b</u> is the subset $\{a : a \ge b\}$ of t with the induced partial ordering. This is itself a finite tree with root b. In fact, this allows for an inductive definition of trees: A tree is either a single vertex or a finite set of trees with a single vertex below them all. Trees and homeomorphic embedding

A <u>labelled tree</u> (with labels in the quasiorder Q) is function $\tau : t \to Q$, where t is an unlabelled tree. We say 'a is a vertex of τ with label q' if $a \in t$, $q \in Q$ and $\tau(a) = q$.

Figure 3: A tree labelled with elements from the quasiorder $Q = \mathbb{N}$.

- Trees and homeomorphic embedding

Maps between trees

Definition 6 A homeomorphic embedding (henceforth a map) $f : t \rightarrow u$ between finite trees is an injective function f satisfying, for all $a, b \in t$,

$$f(a \wedge b) = f(a) \wedge f(b),$$

where $a \wedge b$ is the infimum of a and b — that is, the greatest element in both their under-sets. If there is a map $t \rightarrow u$ write $t \leq u$; since the composition of maps is again a map, and the identity function is a map, the resulting relation \leq is a quasiorder. Well-quasiorders

Trees and homeomorphic embedding

Figure 4: A tree homeomorphically embeds into another; vertices in the range are coloured blue.

Well-quasiorders

Trees and homeomorphic embedding

Notice that a map f of unlabelled trees is an order-embedding:

$$a \le b \iff a \land b = a$$

 $\iff f(a \land b) = f(a) \text{ since } f \text{ is injective}$
 $\iff f(a) \land f(b) = f(a)$
 $\iff f(a) \le f(b).$

In particular, this means that if f is a surjective map, it is in fact an order-isomorphism.

For labelled trees a non-decreasing homeomorphic embedding (henceforth also called a map) $f: \tau \to v$ is the corresponding notion: we require that f be a map, considered a a function $t \to u$ (ignoring labels), and that for every vertex a of τ , $\tau(a) \leq v(f(a))$.

Kruskal's Tree Theorem

We now have all the tools we need to prove the main theorem of this essay.

Theorem 5

The set of finite trees labelled by elements of a well-quasiorder Q, T(Q), is itself a well-quasiorder under homeomorphic embedding.

T(Q) is a well-founded quasiorder

The identity function is a map, and the composition of two maps is again a map: suppose $f : \tau \to v$, $g : v \to \phi$ are maps. Then for $a, b \in \tau$,

$$g \circ f(a \wedge b) = g(f(a) \wedge f(b)) = g \circ f(a) \wedge g \circ f(b).$$

 $au(\mathbf{a}) \leq v(f(\mathbf{a})) \leq \phi(g(f(\mathbf{a}))) \implies \tau(\mathbf{a}) \leq \phi(g \circ f(\mathbf{a})).$

Thus it remains to show that the relation is well-founded.

Lemma 6

Let Q be wqo. Then the set of finite trees labelled by Q, T(Q), is well-founded under homeomorphic embedding.

For a contradiction, suppose not. Then we have a strictly-decreasing chain in T(Q)

$$\bar{\tau} := (\tau_1, \tau_2, \tau_3, ...), \ \tau_1 > \tau_2 > \tau_3 > ...$$

Consider the underlying chain of unlabelled trees $t_i := \text{dom}(\tau_i)$. Then since \mathbb{N} is well-founded and $t_i \ge t_j \implies |t_i| \ge |t_j|$, we have a subsequence of trees of equal size. But then, in this subsequence, the maps $t_i \rightarrow t_j$ are surjective, and thus order-isomorphisms. Hence we may restrict to the case where $\text{dom}(\tau_i) = \text{dom}(\tau_j) := t$ for all $i, j \in \mathbb{N}$. Let the vertices of t be $a_1, ..., a_n$, and consider for i = 1, ..., n the sequence

$$\bar{a}_i:\mathbb{N}\to Q:k\mapsto au_k(a_i)$$

— that is to say, \bar{a}_i is the sequence of labels at the vertex a_i . Since Q is wqo, by Lemma 1 there is a subsequence $\bar{\tau}_1 \subseteq \bar{\tau}$ such that the corresponding subsequence of \bar{a}_1 is non-decreasing. Inductively, if $\bar{\tau}_i \subseteq \bar{\tau}$ is such that the corresponding subsequence of \bar{a}_j is non-decreasing for all $j \leq i$, by Lemma 1 there is a subsequence $\bar{\tau}_{i+1} \subseteq \bar{\tau}_i$ such that the corresponding subsequence of \bar{a}_{i+1} is also non-decreasing.

Then the subsequence $\bar{\tau}_n$ is non-decreasing at every vertex a_i , and so is non-decreasing as a sequence of labelled trees. But it is a subsequence of the decreasing sequence $\bar{\tau}$, which is a contradiction. Hence in fact T(Q) is well-founded under homeomorphic embedding.

Now that we know T(Q) is a well-founded quasiorder, we can make use of the Minimal Bad Sequence Lemma.

Proving Kruskal's Tree Theorem

For a contradiction, suppose T(Q) is not wqo. Then since T(Q) is a well-founded quasiorder we can take an MBS $\overline{t} : \mathbb{N} \to T(Q)$. As Q is quasiordered, the sequence $\operatorname{root}(\overline{\tau}) : \mathbb{N} \to Q$ has a non-decreasing subsequence $\operatorname{root}(\overline{\tau})_u$ by Proposition 1 (iii). Consider the corresponding sequence $\overline{\tau}_u$ in T(Q), and define for each *i* the set A_i of branches at the children of the root of $\tau_{u,i}$. Define also

$$A:=\bigcup_{i\in\mathbb{N}}A_i;$$

then for all $\rho \in A$, $\rho \in A_i$ for some $i \implies \rho < \tau_{u,i}$. Thus by the MBS Lemma A is wqo.

Moreover, by Proposition 4 (ii) $A^{(<\omega)}$ is also wqo. So we have a good pair $A_i \leq A_j$, which is to say a non-decreasing function

 $f: A_i \rightarrow A_j$.

Since $\rho \leq f(\rho)$ for all $\rho \in A_i$, we have maps $h_{\rho} : \rho \to f(\rho)$. This lets us define a map $h : \tau_{u,i} \to \tau_{u,j}$ as follows:

•
$$h(\operatorname{root}(\tau_{u,i})) := \operatorname{root}(\tau_{u,j}),$$

•
$$h|_{\rho} := h_{\rho}$$
 for each branch $\rho \in A_i$.

But this means $\tau_{u,i} \leq \tau_{u,j}$, contradicting the fact that $\overline{\tau}$ is bad. Hence T(Q) is wqo.

Well-foundedness of ε_0

It was shown by Gentzen in 1936 that the Peano axioms are proven consistent by primitive recursive arithmetic along with the statement

 $WO(\varepsilon_0) :=$ the ordinal ε_0 is well-ordered.

In this way we know that (if PA is consistent) PA cannot prove $WO(\varepsilon_0)$. Indeed, since PA interprets primitive recursive arithmetic, such a proof would imply that PA proves its own consistency, which is false by Gödel's second incompleteness theorem. We will show that Kruskal's tree theorem implies $WO(\varepsilon_0)$, and so is independent of Peano Arithmetic.

Tree representation of ordinals less than ε_0

Every ordinal less than ε_0 may be represented uniquely in its Cantor Normal Form:

$$\alpha = \omega^{\alpha_0} + \omega^{\alpha_1} + \dots + \omega^{\alpha_n},$$

where $\alpha_0 \ge \alpha_1 \ge ... \ge \alpha_n$ are finitely-many ordinals, each strictly less than α .

Recursively expanding out the α_i in Cantor Normal form until nothing remains but 0 and ω^x yields a very tree-like structure:

$$\omega^{\omega \cdot 2 + 1} + 3 = \omega^{\omega^{\omega^0} + \omega^{\omega^0} + \omega^0} + \omega^0 + \omega^0 + \omega^0$$

and indeed this is the essence of how we will encode ordinals up to ε_0 as finite trees.

If T is the set of finite trees, we define $F : \varepsilon_0 \to T$ as follows:

• we define F(0) to be the singleton tree (call it 1_T), and

• given trees
$$F(\alpha_i)$$
 for $0 \le i \le n$ and
 $\alpha = \omega^{\alpha_0} + \omega^{\alpha_1} + ... + \omega^{\alpha_n}$, $F(\alpha)$ is the tree with branches
 $F(\alpha_0), ..., F(\alpha_n)$ joined to a single root.

Figure 5: The tree corresponding to $\omega^{\omega \cdot 2+1} + 3$.

Well-quasiorders

Facts about $F : \varepsilon_0 \to T$

- ► F is a bijection, and
- If $t \le u$ as trees under homeomorphic embedding, then $F^{-1}(t) \le F^{-1}(u)$ as ordinals.

The proof of these statements is somewhat involved, but is done by recursively defining its inverse $G : T \to \varepsilon_0$ in terms of the 'height' of a tree (which is the maximum size of an under-set of a vertex).

•
$$G(1_T) = 0$$
, and

▶ if ht(t) = k > 0, let S := {s₀,..., s_n} be the set of the branches at the children of the root. Order them so that

$$G(s_0) \geq G(s_1) \geq ... \geq G(s_n);$$

note that G is already defined on the s_i since they each have height at most k - 1. Then set

$$G(t) = \omega^{G(s_0)} + \ldots + \omega^{G(s_n)}.$$

Kruskal's Tree Theorem proves $WO(\varepsilon_0)$

Take an arbitrary sequence of ordinals below ε_0

$$\bar{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \dots).$$

By the bijection $G: T \to \varepsilon_0$, for each of these ordinals there is a unique tree t_i with $G(t_i) = \alpha_i$, giving a corresponding sequence $\overline{t} = (t_0, t_1, t_2, ...)$. But then by Kruskal's tree theorem, there is a good pair $t_i \leq t_j$, which yields a pair $\alpha_i \leq \alpha_j$. Hence $\overline{\alpha}$ is not a strictly-decreasing sequence. So ε_0 is well-founded.

Corollary 7

Kruskal's theorem is not provable in PA.

- T. E. Forster, N. Bowler and M. Seisenberger An Introduction to WQO and BQO Theory http://dpmms.cam.ac.uk/~tf/BQObok.pdf/ [accessed January 2020].
- J. B. Kruskal Well-quasiordering, the tree theorem, and Vazsonvi's Conjecture. Transactions of the American Mathematical Society, American Mathematical Society, 1960.
- C. St.J. A. Nash-Williams On well-quasiordering finite trees Proceedings of the Cambridge Philosophical Society, 1963.
- S. G. Simpson Non-provability of certain combinatorial properties of finite trees Harvey Friedman's Research on the Foundations of Mathematics, Studies in Logic and the Foundations of Mathematics, 1985.