Well-quasiorders and Kruskal's Tree Theorem

Andrew Slattery
School of Mathematics
University of Leeds

PG Logic Seminar, 2021

Prerequisites

Some knowledge of order theory is assumed, including the basics of partial orders, total orders and well-orders, along with the theory of countable ordinals up to ε_{0}. I also assume some knowledge of combinatorics, including the statement of Ramsey's theorem for k-partitions of $\mathbb{N}^{(2)}$.

Initial Definitions and Notation

Definition 1
A quasiordering (or a preordering) \leq on a set X is a reflexive and transitive relation on X. We call a set X equipped with such a relation a quasiorder (or a preorder).
We will write $a<b$ (and say ' a is strictly less than b ') if $a \leq b$ and $b \not \leq a$. We will also write $a \notin b$ (and say ' a and b are incomparable') if neither $a \leq b$ nor $b \leq a$.

Examples

Any partial order, total order or well-order is a quasiorder.
Various contexts with a notion of 'embedding' form quasiorders.
For example, we might take:

- (some set of) groups, with $G \leq H$ exactly when there is an injective group homomorphism $G \rightarrow H$,
- (some set of) topological spaces, with injective continuous maps,
- (some set of) infinite graphs, with the subgraph relation, or the graph minor relation.

Well-foundedness

Definition 2

- Given a set X, a quasiorder \leq on X is well-founded if every subset $A \subseteq X$ has a minimal element with respect to \leq. That is, for each $A \subseteq X$ there exists an $a \in A$ such that for every $b \in A, b \nless a$.
- Equivalently (given the Axiom of Dependent Choice, which I will assume), the relation is well-founded if it contains no countably-infinite descending chain $x_{0}>x_{1}>x_{2}>\ldots$ in X.

However, well-foundedness of given quasiorders need not be preserved under lifting operations. For example, (\mathbb{N}, \mid) is a well-founded quasiorder, but the sequence

$$
P_{2}>P_{3}>P_{5}>\ldots
$$

where $P_{n}:=\{p \geq n: p$ prime $\}$ is an infinite descending sequence in $P(\mathbb{N})$.
So, when is the powerset of a quasiorder well-founded?

Goodness

Take a quasiorder X and consider sequences $\bar{a}: \mathbb{N} \rightarrow X$.

- A pair $\left(a_{i}, a_{j}\right)$ is called good if $i<j$ in \mathbb{N} and $a_{i} \leq a_{j}$ in X.
- The whole sequence is called good if it contains a good pair. Otherwise it is bad.
This allows us to define a stronger (as we shall see) notion than well-foundedness for our quasiorders.

Definition 3
A well-quasiorder X is a quasiorder for which every sequence $\bar{a}: \mathbb{N} \rightarrow X$ is good. (Henceforth we write 'wqo' for 'well-quasiorder'.)

Examples

- The natural numbers (\mathbb{N}, \leq) with the usual order are a wqo - every well-order is wqo. The integers (\mathbb{Z}, \leq) are not wqo, as the sequence of negative integers

$$
0,-1,-2,-3, \ldots
$$

is bad, and the naturals (\mathbb{N}, \mid) under divisibility are not wqo, as the sequence of primes

$$
2,3,5,7,11, \ldots
$$

is bad. (These are in essence the only types of bad sequence; see Proposition 1).

- if (X, \leq) is a wqo, then the finite product X^{k} with componentwise ordering is also wqo (See Proposition 4).
- If X is a finite set, the set X^{*} of finite strings of elements of X ordered by $a \leq b$ if and only if a is a subsequence of b (for example, $X=\{0,1\}, a=011, b=01001$) is a wqo (this is called Higman's Lemma). This is a special case of Kruskal's Tree Theorem, which states that if Q is a wqo, then so is the set $T(Q)$ of finite trees labelled with elements of Q, under 'homeomorphic embedding'.

Characterising Well-quasiorders

Proposition 1

Let A be a set with quasiorder \leq. Then the following are equivalent:
(i) A is a well-quasiordering.
(ii) A contains no infinite strictly-decreasing sequence, nor an infinite sequence of pairwise-incomparable elements.
(iii) Every sequence $\bar{a}: \mathbb{N} \rightarrow A$ contains a non-decreasing subsequence \bar{a}_{u}.

We will show $(i) \Longrightarrow(i i) \Longrightarrow(i i i) \Longrightarrow(i)$.

- Let $\bar{a}: \mathbb{N} \rightarrow A$ be a sequence in A. By (i), \bar{a} is good, so it contains a good pair $a_{i} \leq a_{j}$. Then because of this pair, \bar{a} is neither an strictly-decreasing sequence, nor a sequence of pairwise-incomparable elements.
- Given a sequence $\bar{a}: \mathbb{N} \rightarrow A$, partition the two-sets $\{i<j\}$ into three parts P_{1}, P_{2}, P_{3}, given respectively by the trichotomous conditions $a_{i} \leq a_{j}, a_{i}>a_{j}$ and $a_{i} \notin a_{j}$. Then Ramsey's theorem gives us a infinite monochromatic subset of \mathbb{N}.
But by (ii) this subset cannot be monochromatic in P_{2}, nor in P_{3}, and so it must be monochromatic in P_{1}. This is our non-decreasing subsequence \bar{a}_{u}.
- Let $\bar{a}: \mathbb{N} \rightarrow A$ be a sequence in A. By (iii), it contains a non-decreasing subsequence \bar{a}_{u}. In particular, $a_{u(0)} \leq a_{u(1)}$, and this is a good pair, so \bar{a} is a good sequence.

The Powerset Condition

Proposition 2
Let X be a set with quasiorder \leq. Then X is a wqo if and only if the lift $P(X)$ with the relation

$$
A \leq B \Longleftrightarrow \forall a \in A \exists b \in B: a \leq b
$$

is well-founded.

In both directions we prove the contrapositive.

- Suppose X is not wqo, so we have a bad sequence $\bar{a}: \mathbb{N} \rightarrow X$. Define

$$
A_{i}:=\left\{a_{j}: j \geq i\right\}
$$

Then

$$
A_{0}>A_{1}>A_{2}>\ldots
$$

is a strictly-decreasing sequence in $P(X)$ - if $A_{i} \leq A_{j}$ for some $i<j$, there is some $k \geq j>i$ such that $a_{i} \leq a_{k}$, contradicting the fact that \bar{a} is bad.

- Conversely, suppose $P(X)$ is not well-founded. Then we have a strictly-decreasing chain of subsets

$$
A_{0}>A_{1}>A_{2}>\ldots
$$

take for each i some $a_{i} \in A_{i}$ such that $a_{i} \not Z b$ for all $b \in A_{i+1}$.
Then we claim the sequence $\left(a_{i}\right)$ is bad. Indeed, let $i<j$. Then since $A_{j} \leq A_{i+1}$ there is some $c \in A_{i+1}$ with $a_{j} \leq b$. Then since by construction $a_{i} \not \leq c$, we must have $a_{i} \not \leq a_{j}$. Hence X is wqo.

The Minimal Bad Sequence

Definition 4
Let X be a well-founded quasiorder which is not a wqo. A bad sequence $\bar{a}: \mathbb{N} \rightarrow X$ is a minimal bad sequence (an MBS) if for each $n \in \mathbb{N}, a_{n}$ is minimal from the set
$\left\{a \in X:\right.$ there is a bad sequence whose first n terms are $\left.a_{0}, \ldots, a_{n-1}, a\right\}$.

We would like to use this notion in some sense like a 'minimal counterexample' in induction proofs. That is, we want to say that every sequence which is 'below' an MBS must be a good sequence.

The Minimal Bad Sequence Lemma

Lemma 3
Let X be a well-founded quasiorder which is not wqo, and let $\bar{a}: \mathbb{N} \rightarrow X$ be an MBS. Then the subset

$$
Y:=\left\{y \in X: y<a_{n} \text { for some } n \in \mathbb{N}\right\}
$$

is wqo.

Let $\bar{b}: \mathbb{N} \rightarrow X$ be an arbitrary bad sequence in X. Suppose for the sake of contradiction that every element of \bar{b} is in Y; that is, suppose that for all i there is n such that $b_{i}<a_{n}$. Take a pair (i, n) with least possible n and consider the sequence

$$
a_{0}, a_{1}, \ldots, a_{n-1}, b_{i}, b_{i+1}, b_{i+2}, \ldots
$$

- it cannot be bad, or else a_{n} is not minimal among bad continuations of the initial segment $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. Thus it contains a good pair, and this must be of the form $a_{j} \leq b_{k}$, since \bar{a} and \bar{b} are both bad.

But since $b_{k} \in Y$, there is some I with $b_{k}<a_{l} \Longrightarrow a_{j}<a_{l}$, and by minimality of n we have $j<n \leq I$.
So in fact $a_{j}<a_{l}$ is a good pair, contradicting badness of \bar{a}. Thus \bar{b} was not in Y, and so every sequence in Y is good. Hence Y is wqo.

Well-quasiorders from well-quasiorders

Proposition 4
Let A and B be wqo. Then the following are also wqo:
(i) the product $A \times B$, given the ordering

$$
(a, b) \leq\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow a \leq b \wedge a^{\prime} \leq b^{\prime} .
$$

(ii) the set $A^{(<\omega)}$ of finite subsets of A, given the ordering

$$
B \leq C \Longleftrightarrow \exists f: B \rightarrow C \text { injective and non-decreasing. }
$$

We will show (i), and use this result to prove (ii).
(i) Let $(\bar{a}, \bar{b}): \mathbb{N} \rightarrow A \times B$ be a sequence in $A \times B$, with projections $\bar{a}: \mathbb{N} \rightarrow A$ and $\bar{b}: \mathbb{N} \rightarrow B$.
By Lemma 1, there is a non-decreasing subsequence \bar{a}_{u} of \bar{a}, since A is a wqo. Since B is also a wqo, the corresponding subsequence \bar{b}_{u} of \bar{b} has a good pair $b_{u(i)} \leq b_{u(j)}$. Then $\left(a_{u(i)}, b_{u(i)}\right) \leq\left(a_{u(j)}, b_{u(j)}\right)$ and so ($\left.\bar{a}, \bar{b}\right)$ is good. So $A \times B$ is a wqo.
(ii) Note that the relation \leq on $A^{(<\omega)}$ is reflexive (take $f=1_{B}: B \rightarrow B$) and transitive (since the composition of non-decreasing functions is itself non-decreasing). Moreover, it is well-founded: take a subset $\mathcal{A} \subseteq A^{(<\omega)}$, and let $n:=\min \{|B|: B \in \mathcal{A}\}$. Since $B \leq C \Longrightarrow|B| \leq|C|$, a minimal element among the finitely-many elements of size n is minimal in \mathcal{A}.

Hence either $A^{(<\omega)}$ is a wqo or we can take an MBS
$\bar{B}: \mathbb{N} \rightarrow A^{(<\omega)}$. As the empty set is the minimum element in $A^{(<\omega)}$, none of the B_{i} is empty; pick $b_{i} \in B_{i}$ for each i, and write $C_{i}:=B_{i} \backslash\left\{b_{i}\right\}$.
Note that $C_{i}<B_{i}$ (the inclusion is injective and non-decreasing).
Then by the MBS Lemma, the set

$$
\mathcal{X}:=\left\{C_{i} \mid i \in \mathbb{N}\right\} \subseteq A^{(<\omega)}
$$

is wqo.
Now, we know by (i) that $A \times \mathcal{X}$ is a wqo, and thus that the sequence (\bar{b}, \bar{C}) is good. But a good pair $\left(b_{i}, C_{i}\right) \leq\left(b_{j}, C_{j}\right)$ yields a good pair $B_{i} \leq B_{j}$ in \bar{B}, contradicting the fact that \bar{B} is a bad sequence.
Hence $A^{(<\omega)}$ is a wqo.

Basic definitions and notation

One structure to which we can lift a quasiorder is the finite (rooted) tree, which here we can consider as a generalisation of the finite list.

Definition 5
A finite (unlabelled) tree is a finite partially-ordered set t, whose elements are called vertices, such that

- t has a minimum vertex $r=\operatorname{root}(t)$, called the root of t, and
- for every $b \in t$, the set of vertices below $b,\{a: a<b\}$ (the under-set of b), is linearly-ordered.
In this way, we might say that trees 'look like lists when looking down'.

Figure 1: A tree, in which $a \leq b$ if there is a path upwards from a to b. Here the blue vertex has its under-set highlighted in red.

We say ' a is the parent of b ' if $a=\max \{x: x<b\}$ (which exists because the set is a finite linear order), and we say that ' b is a child of a ' if a is the parent of b (see Figure 2). Note that a vertex can have multiple children.

Figure 2: A vertex in blue: its children are in green, and its parent is in red.

For a vertex $b \in t$, the branch at b is the subset $\{a: a \geq b\}$ of t with the induced partial ordering. This is itself a finite tree with root b. In fact, this allows for an inductive definition of trees: A tree is either a single vertex or a finite set of trees with a single vertex below them all.

A labelled tree (with labels in the quasiorder Q) is function $\tau: t \rightarrow Q$, where t is an unlabelled tree. We say ' a is a vertex of τ with label q^{\prime} if $a \in t, q \in Q$ and $\tau(a)=q$.

Figure 3: A tree labelled with elements from the quasiorder $Q=\mathbb{N}$.

Maps between trees

Definition 6

A homeomorphic embedding (henceforth a map) $f: t \rightarrow u$ between finite trees is an injective function f satisfying, for all $a, b \in t$,

$$
f(a \wedge b)=f(a) \wedge f(b)
$$

where $a \wedge b$ is the infimum of a and b - that is, the greatest element in both their under-sets. If there is a map $t \rightarrow u$ write $t \leq u$; since the composition of maps is again a map, and the identity function is a map, the resulting relation \leq is a quasiorder.

Figure 4: A tree homeomorphically embeds into another; vertices in the range are coloured blue.

Notice that a map f of unlabelled trees is an order-embedding:

$$
\begin{aligned}
a \leq b & \Longleftrightarrow a \wedge b=a \\
& \Longleftrightarrow f(a \wedge b)=f(a) \text { since } f \text { is injective } \\
& \Longleftrightarrow f(a) \wedge f(b)=f(a) \\
& \Longleftrightarrow f(a) \leq f(b) .
\end{aligned}
$$

In particular, this means that if f is a surjective map, it is in fact an order-isomorphism.
For labelled trees a non-decreasing homeomorphic embedding (henceforth also called a map) $f: \tau \rightarrow v$ is the corresponding notion: we require that $f \overline{\text { be a map, considered a a function } t \rightarrow u}$ (ignoring labels), and that for every vertex a of $\tau, \tau(a) \leq v(f(a))$.

Kruskal's Tree Theorem

We now have all the tools we need to prove the main theorem of this essay.

Theorem 5
The set of finite trees labelled by elements of a well-quasiorder Q, $T(Q)$, is itself a well-quasiorder under homeomorphic embedding.

$T(Q)$ is a well-founded quasiorder

The identity function is a map, and the composition of two maps is again a map: suppose $f: \tau \rightarrow v, g: v \rightarrow \phi$ are maps. Then for $a, b \in \tau$,

$$
\begin{gathered}
g \circ f(a \wedge b)=g(f(a) \wedge f(b))=g \circ f(a) \wedge g \circ f(b) . \\
\tau(a) \leq v(f(a)) \leq \phi(g(f(a))) \Longrightarrow \tau(a) \leq \phi(g \circ f(a))
\end{gathered}
$$

Thus it remains to show that the relation is well-founded.

Lemma 6

Let Q be wqo. Then the set of finite trees labelled by $Q, T(Q)$, is well-founded under homeomorphic embedding.
For a contradiction, suppose not. Then we have a strictly-decreasing chain in $T(Q)$

$$
\bar{\tau}:=\left(\tau_{1}, \tau_{2}, \tau_{3}, \ldots\right), \tau_{1}>\tau_{2}>\tau_{3}>\ldots
$$

Consider the underlying chain of unlabelled trees $t_{i}:=\operatorname{dom}\left(\tau_{i}\right)$. Then since \mathbb{N} is well-founded and $t_{i} \geq t_{j} \Longrightarrow\left|t_{i}\right| \geq\left|t_{j}\right|$, we have a subsequence of trees of equal size. But then, in this subsequence, the maps $t_{i} \rightarrow t_{j}$ are surjective, and thus order-isomorphisms. Hence we may restrict to the case where $\operatorname{dom}\left(\tau_{i}\right)=\operatorname{dom}\left(\tau_{j}\right):=t$ for all $i, j \in \mathbb{N}$.

Let the vertices of t be a_{1}, \ldots, a_{n}, and consider for $i=1, \ldots, n$ the sequence

$$
\bar{a}_{i}: \mathbb{N} \rightarrow Q: k \mapsto \tau_{k}\left(a_{i}\right)
$$

- that is to say, \bar{a}_{i} is the sequence of labels at the vertex a_{i}. Since Q is wqo, by Lemma 1 there is a subsequence $\bar{\tau}_{1} \subseteq \bar{\tau}$ such that the corresponding subsequence of \bar{a}_{1} is non-decreasing. Inductively, if $\bar{\tau}_{i} \subseteq \bar{\tau}$ is such that the corresponding subsequence of \bar{a}_{j} is non-decreasing for all $j \leq i$, by Lemma 1 there is a subsequence $\bar{\tau}_{i+1} \subseteq \bar{\tau}_{i}$ such that the corresponding subsequence of \bar{a}_{i+1} is also non-decreasing.

Then the subsequence $\bar{\tau}_{n}$ is non-decreasing at every vertex a_{i}, and so is non-decreasing as a sequence of labelled trees. But it is a subsequence of the decreasing sequence $\bar{\tau}$, which is a contradiction. Hence in fact $T(Q)$ is well-founded under homeomorphic embedding.
Now that we know $T(Q)$ is a well-founded quasiorder, we can make use of the Minimal Bad Sequence Lemma.

Proving Kruskal's Tree Theorem

For a contradiction, suppose $T(Q)$ is not wqo. Then since $T(Q)$ is a well-founded quasiorder we can take an MBS $\bar{t}: \mathbb{N} \rightarrow T(Q)$. As Q is quasiordered, the sequence $\operatorname{root}(\bar{\tau}): \mathbb{N} \rightarrow Q$ has a non-decreasing subsequence $\operatorname{root}(\bar{\tau})_{u}$ by Proposition 1 (iii).
Consider the corresponding sequence $\bar{\tau}_{u}$ in $T(Q)$, and define for each i the set A_{i} of branches at the children of the root of $\tau_{u, i}$. Define also

$$
A:=\bigcup_{i \in \mathbb{N}} A_{i} ;
$$

then for all $\rho \in A, \rho \in A_{i}$ for some $i \Longrightarrow \rho<\tau_{u, i}$. Thus by the MBS Lemma A is wqo.

Moreover, by Proposition 4 (ii) $A^{(<\omega)}$ is also wqo. So we have a good pair $A_{i} \leq A_{j}$, which is to say a non-decreasing function

$$
f: A_{i} \rightarrow A_{j}
$$

Since $\rho \leq f(\rho)$ for all $\rho \in A_{i}$, we have maps $h_{\rho}: \rho \rightarrow f(\rho)$. This lets us define a map $h: \tau_{u, i} \rightarrow \tau_{u, j}$ as follows:

- $h\left(\operatorname{root}\left(\tau_{u, i}\right)\right):=\operatorname{root}\left(\tau_{u, j}\right)$,
- $\left.h\right|_{\rho}:=h_{\rho}$ for each branch $\rho \in A_{i}$.

But this means $\tau_{u, i} \leq \tau_{u, j}$, contradicting the fact that $\bar{\tau}$ is bad. Hence $T(Q)$ is wqo.

Well-foundedness of ε_{0}

It was shown by Gentzen in 1936 that the Peano axioms are proven consistent by primitive recursive arithmetic along with the statement

$$
W O\left(\varepsilon_{0}\right):=\text { the ordinal } \varepsilon_{0} \text { is well-ordered. }
$$

In this way we know that (if PA is consistent) PA cannot prove $W O\left(\varepsilon_{0}\right)$. Indeed, since PA interprets primitive recursive arithmetic, such a proof would imply that PA proves its own consistency, which is false by Gödel's second incompleteness theorem. We will show that Kruskal's tree theorem implies $W O\left(\varepsilon_{0}\right)$, and so is independent of Peano Arithmetic.

Tree representation of ordinals less than ε_{0}

Every ordinal less than ε_{0} may be represented uniquely in its Cantor Normal Form:

$$
\alpha=\omega^{\alpha_{0}}+\omega^{\alpha_{1}}+\ldots+\omega^{\alpha_{n}}
$$

where $\alpha_{0} \geq \alpha_{1} \geq \ldots \geq \alpha_{n}$ are finitely-many ordinals, each strictly less than α.
Recursively expanding out the α_{i} in Cantor Normal form until nothing remains but 0 and ω^{x} yields a very tree-like structure:

$$
\omega^{\omega \cdot 2+1}+3=\omega^{\omega^{\omega^{0}}+\omega^{\omega^{0}}+\omega^{0}}+\omega^{0}+\omega^{0}+\omega^{0}
$$

and indeed this is the essence of how we will encode ordinals up to ε_{0} as finite trees.

If T is the set of finite trees, we define $F: \varepsilon_{0} \rightarrow T$ as follows:

- we define $F(0)$ to be the singleton tree (call it 1_{T}), and
- given trees $F\left(\alpha_{i}\right)$ for $0 \leq i \leq n$ and $\alpha=\omega^{\alpha_{0}}+\omega^{\alpha_{1}}+\ldots+\omega^{\alpha_{n}}, F(\alpha)$ is the tree with branches $F\left(\alpha_{0}\right), \ldots, F\left(\alpha_{n}\right)$ joined to a single root.

Figure 5: The tree corresponding to $\omega^{\omega \cdot 2+1}+3$.

Facts about $F: \varepsilon_{0} \rightarrow T$

- F is a bijection, and
- If $t \leq u$ as trees under homeomorphic embedding, then $F^{-1}(t) \leq F^{-1}(u)$ as ordinals.

The proof of these statements is somewhat involved, but is done by recursively defining its inverse $G: T \rightarrow \varepsilon_{0}$ in terms of the 'height' of a tree (which is the maximum size of an under-set of a vertex).

- $G\left(1_{T}\right)=0$, and
- if $\operatorname{ht}(t)=k>0$, let $S:=\left\{s_{0}, \ldots, s_{n}\right\}$ be the set of the branches at the children of the root. Order them so that

$$
G\left(s_{0}\right) \geq G\left(s_{1}\right) \geq \ldots \geq G\left(s_{n}\right)
$$

note that G is already defined on the s_{i} since they each have height at most $k-1$. Then set

$$
G(t)=\omega^{G\left(s_{0}\right)}+\ldots+\omega^{G\left(s_{n}\right)} .
$$

Kruskal's Tree Theorem proves $W O\left(\varepsilon_{0}\right)$

Take an arbitrary sequence of ordinals below ε_{0}

$$
\bar{\alpha}=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right)
$$

By the bijection $G: T \rightarrow \varepsilon_{0}$, for each of these ordinals there is a unique tree t_{i} with $G\left(t_{i}\right)=\alpha_{i}$, giving a corresponding sequence $\bar{t}=\left(t_{0}, t_{1}, t_{2}, \ldots\right)$. But then by Kruskal's tree theorem, there is a good pair $t_{i} \leq t_{j}$, which yields a pair $\alpha_{i} \leq \alpha_{j}$. Hence $\bar{\alpha}$ is not a strictly-decreasing sequence. So ε_{0} is well-founded.

Corollary 7
Kruskal's theorem is not provable in PA.

囯 T．E．Forster，N．Bowler and M．Seisenberger An Introduction to WQO and BQO Theory
http：／／dpmms．cam．ac．uk／～tf／BQObok．pdf／［accessed January 2020］．
國 J．B．Kruskal Well－quasiordering，the tree theorem，and Vazsonyi＇s Conjecture．Transactions of the American Mathematical Society，American Mathematical Society， 1960.

圊 C．St．J．A．Nash－Williams On well－quasiordering finite trees Proceedings of the Cambridge Philosophical Society， 1963.
囯 S．G．Simpson Non－provability of certain combinatorial properties of finite trees Harvey Friedman＇s Research on the Foundations of Mathematics，Studies in Logic and the Foundations of Mathematics， 1985.

