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1 Introduction

The theory of well-founded relations — recall that a relation R on a set X is
well-founded if every subset A ⊆ X has a minimal element with respect to R —
is key to several areas of mathematics and computer science, since it allows us to
perform well-founded induction. For example,

• in set theory, well-foundedness of set membership gives the Principle of ε-
Induction, which can allow us define, for example, the ordinal rank of a
set.

• in order theory, well-foundedness of the usual ordering on the ordinals gives
us transfinite induction.

• In general, the fact that a given set of recursively-defined data structures
is well-founded allows us to use structural induction to prove properties of
all instances of the given data structure. Examples from computer science
include lists and trees; in model theory it is used on the set of formulas in a
given language to prove  Loś’s theorem.

We are thus interested in studying well-founded relations in as much generality
as is feasible. A very general class to consider are the quasiorders; reflexive and
transitive relations. However, the property ‘is a well-founded quasiorder on X’
is often not preserved when we try to lift to a more complicated structure — in
particular, to the power-set P (X) where

A ≤ B ⇐⇒ ∀a ∈ A∃b ∈ B : a ≤ b.

To solve this problem, we restrict our attention to the class of well-quasiorders,
which will turn out to be exactly those quasiorders (X,≤) for which (P (X),≤) is
well-founded.

In 1930, Kurt Gödel proved his incompleteness theorems:

1. If a computable logical system, capable of describing the natural numbers, is
consistent, then it not complete. That is, there is a true statement which is not
proven by the system.

2. In particular, the statement ”This system is consistent” cannot be proven inside
the system.

The statements that Gödel builds in the course of proving these theorems are
rather contrived; we must encode proofs and logical deduction in terms of natural
numbers and arithmetic. The question of whether there is a ‘natural’ statement
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unproven by, say, the Peano Axioms was quickly raised. It took until 1977 for
the first true example: the Paris-Harrington theorem states that the strengthened
finite Ramsey theorem

For every triple of positive integers n, k,m one can find N with the
following property: if we colour each of the n-element subsets of S =
{1, 2, 3, ..., N} with one of k colours, then we can find a subset Y ⊆ S
with at least m elements, such that all n-element subsets of Y have the
same colour, and the number of elements of Y is at least the smallest
element of Y . [Wikipedia, accessed February 2020].

is unprovable in Peano Arithmetic (PA). In this essay I will develop the theory of
well-quasiorders in order to prove Kruskal’s tree theorem: the set of finite trees
labelled with elements of a well-quasiorder is itself a well-quasiorder [3]. A suitably-
chosen finite corollary of this (in much the same way that the strengthened finite
Ramsey theorem is a corollary of the infinite Ramsey theorem) turns out also to
be unprovable in PA.

Prerequisites

Some knowledge of order theory is assumed, including the basics of partial orders,
total orders and well-orders, along with the theory of countable ordinals up to ε0.

I also assume some knowledge of combinatorics, including the statement of
Ramsey’s theorem for k-partitions of N(2). The proof that the infinite Ramsey
theorem implies the finite Ramsey theorem may serve as a useful analogy to the
finitisation proof in section 5 (Theorem 9).

Some familiarity with (directed) graph theory may help with visualisation,
although I will be discussing the trees in question for the most part from an order-
theoretic perspective.

2 Quasiorders and well-quasiorders

Definition 1. A quasiordering (or a preordering) ≤ on a set X is a reflexive
and transitive relation on X. We call a set X equipped with such a relation a
quasiorder (or a preorder).

We will write a < b (and say ‘a is strictly less than b’) if a ≤ b∧ b 6≤ a. We will
also write a 6≶ b (and say ‘a and b are incomparable’) if neither a ≤ b nor b ≤ a.

3



Examples

• Quasiorders are very general objects: every partial order (and thus every
total order) is a quasiorder with extra conditions:

– a partial order also requires antisymmetry:

∀x, y ∈ X, x ≤ y ∧ y ≤ x =⇒ x = y

– a total order further requires trichotomy:

∀x, y ∈ X, x ≤ y ∨ y ≤ x.

Indeed, the majority of quasiorders that come up naturally are partial orders,
but the condition of being a partial order is not preserved under certain
natural ‘lifting’ operations. For example, we might want to lift a quasiorder
on a set X to the powerset P (X) under the relation

A ≤ B ⇐⇒ ∀x ∈ A ∃y ∈ B : a ≤ b

— that is, every element of A is ‘dominated’ by some element of B. Then
this relation is reflexive and transitive (and thus the lift takes quasiorders
to quasiorders), but the lift does not necessarily preserve antisymmetry. For
example, taking X = N, the sets A = N, B = N \ {0} satisfy A ≤ B ≤ A
but A 6= B. This phenomenon, where the powerset lift does not preserve
antisymmetry, can also be seen with similar constructions (the set of finite
subsets of X, the set of trees labelled with elements of X, and so on). This
gives some motivation for studying quasiorders, instead of the more familiar
relations above.

• Note that every quasiorder can be turned into a partial order by taking a
quotient by the equivalence relation a ≤ b ≤ a, but this is seldom a natural
construction. For example, consider the set of subsets of R where A ≤ B if
and only if there is an order-embedding A→ B; this relation is reflexive (the
identity function is an order-embedding) and transitive (the composition of
order-embeddings is an order-embedding). This quotient would identify, for
instance [0, 1] and [0, 1), since we have the order-embeddings

[0, 1)→ [0, 1] : x 7→ x

[0, 1]→ [0, 1) : x 7→ x

2
.

But these sets differ in fundamental ways — the existence of a top element,
for example! It is difficult to see the use of the quotient partial order in this
case.
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• Various contexts with a notion of ‘embedding’ admit a quasiorder interpre-
tation. For example, we might take:

– (some set of) groups, with G ≤ H exactly when there is an injective
group homomorphism G→ H,

– (some set of) topological spaces, with injective continuous maps,

– (some set of) infinite graphs, with the subgraph relation, or the graph
minor relation.

Well-foundedness and the good-pair condition

The principle of mathematical induction on the natural numbers N rests on the
fact that, if a proposition fails for some natural number n, there must be a least
natural number for which it fails. That is, it follows from the statement ‘Every
subset of the natural numbers has a least element’. We can generalise this property
of the natural numbers to a general relation:

Definition 2. Given a set X, a relation ≤ on X is well-founded if every subset
A ⊆ X has a minimal element with respect to ≤. That is, for each A ⊆ X there
exists an a ∈ A such that for every b ∈ A, b 6≤ a.

Equivalently (given the Axiom of Dependent Choice, which I will assume for
this essay), the relation is well-founded if it contains no countably-infinite descend-
ing chain x0 > x1 > x2 > ... in X.

Earlier, we saw that the property of being partial order is not necessarily pre-
served when taking the powerset lift, and so we study the weaker construction of
a quasiorder. Now we will see that well-foundedness of a given quasiorders also
need not be preserved under this lift.

For example, take X = N, and consider it with the divisibility quasiorder
a | b ⇐⇒ ∃m : am = b. This is a well-founded relation: a | b in X implies
a ≤ b ∨ b = 0 in N. Let A = {p0, p1, ...} be the set of primes, and let

Ai := A \ {p0, ..., pi−1} for each i ∈ N.

Then in the lift P (X) we have A0 > A1 > A2 > ..., since for each i ≥ 1,

pi ∈ Ai−1 \ Ai
=⇒ Ai−1 6≤ Ai.

So P (X) is not well-founded under this lift.
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So what additional conditions can we place on a well-founded relation ≤ so
that the lift to P (X) (and ideally other similar lifts) is well-founded? In the above
example, the thing which went wrong was that the primes formed an infinite set
of incomparable elements (that is, an infinite antichain). Is this the only obstacle?
(We shall see that the answer is ‘yes’.)

Take a quasiorder X and consider sequences ā : N→ X.

• A pair (ai, aj) is called good if i < j as natural numbers and ai ≤ aj in X.

• The whole sequence is called good if it contains a good pair. Otherwise it is
bad.

This allows us to define a stronger (as we shall see) notion than well-foundedness
for our quasiorders.

Definition 3. A well-quasiorder X is a quasiorder for which every sequence ā :
N→ X is good. (Henceforth we write ‘wqo’ for ‘well-quasiorder’.)

Examples

• The natural numbers (N,≤) with the usual order are a wqo — every well-
order is wqo. The integers (Z,≤) are not wqo, as the sequence of negative
integers

0,−1,−2,−3, ...

is bad, and the naturals (N, |) under divisibility are not wqo, as the sequence
of primes

2, 3, 5, 7, 11, ...

is bad. (These are in essence the only types of bad sequence; see Proposi-
tion 1).

• if (X,≤) is a wqo, then the finite product Xk with componentwise ordering
is also wqo (See Proposition 4).

• If X is a finite set, the set X∗ of finite strings of elements of X ordered by
a ≤ b if and only if a is a subsequence of b (for example, X = {0, 1}, a = 011,
b = 01001) is a wqo (this is called Higman’s Lemma). This is a special case
of Kruskal’s Tree Theorem, which states that if Q is a wqo, then so is the
set T (Q) of finite trees labelled with elements of Q, under ‘homeomorphic
embedding’ (See Section 3).

We cannot extend Higman’s Lemma to the set of infinite sequences Xω, or
more generally to α-sequences for a given ordinal α, as this set is not a wqo
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in general. We can however restrict the class of well-quasiordering to so-called
‘better-quasiorders’ in order to generalise Higman’s Lemma in this way.

The good-pair condition may seem somewhat contrived, but in fact it is equiv-
alent to well-foundedness along with the ‘no infinite antichains’ condition.

Proposition 1. Let A be a set with quasiorder ≤. Then the following are equiva-
lent:

(i) A is a well-quasiordering.

(ii) A contains no infinite strictly-decreasing sequence, nor an infinite sequence
of pairwise-incomparable elements.

(iii) Every sequence ā : N→ A contains a non-decreasing subsequence āu.

Proof. We will show (i) =⇒ (ii) =⇒ (iii) =⇒ (i).

(i) =⇒ (ii) Let ā : N → A be a sequence in A. By (i), ā is good, so it contains a good
pair ai ≤ aj. Then because of this pair, ā is neither an strictly-decreasing
sequence, nor a sequence of pairwise-incomparable elements.

(ii) =⇒ (iii) This implication may be shown with the following nice Ramsey-theoretic
argument.

Given a sequence ā : N→ A, partition the two-sets {i < j} ∈ N(2) into three
parts P1, P2, P3, given respectively by the conditions ai ≤ aj, ai > aj and
ai 6≶ aj. Then Ramsey’s theorem gives us a infinite monochromatic subset
of N.

But by (ii) this subset cannot be monochromatic in P2 (giving a strictly-
decreasing sequence), nor in P3 (giving a sequence of pairwise-incomparable
elements), and so it must be monochromatic in P1. This is our non-decreasing
subsequence āu.

(iii) =⇒ (i) Let ā : N → A be a sequence in A. By (iii), it contains a non-decreasing
subsequence āu. In particular, au(0) ≤ au(1), and this is a good pair, so ā is
a good sequence.

This will allow is to show that the good-pair condition is precisely what we
need to ensure the lift to P (X) is well-founded.

Proposition 2. Let X be a set with quasiorder ≤. Then X is a wqo if and only
if the lift P (X) is well-founded.
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Proof. In both directions we prove instead the contrapositive.

¬(i) =⇒ ¬(ii) Suppose X is not wqo, so we have a bad sequence ā : N→ X. Define

Ai := {aj : j ≥ i}.

Then
A0 > A1 > A2 > ...

is a strictly-decreasing sequence in P (X) — if Ai ≤ Aj for some i < j, there
is some k ≥ j > i such that ai ≤ ak, contradicting the fact that ā is bad.

¬(ii) =⇒ ¬(i) Conversely, suppose P (X) is not well-founded. It then suffices by Propo-
sition 1 to show that X contains either an infinite antichain or a strictly-
decreasing sequence.

Since P (X) is not well-founded, we have a strictly-decreasing chain of subsets

A0 > A1 > A2 > ...;

take for each i some ai ∈ Ai such that ai 6≤ b for all b ∈ Ai+1. In particular,
ai 6≤ ai+1, and in fact ai 6≤ aj for all j > i. To see this, note that since
Aj ≤ Ai+1 there is some b ∈ Ai+1 with aj ≤ b. But then if ai ≤ aj we get
ai ≤ b, which is impossible.

Now as we did earlier, we can apply Ramsey’s theorem to the set {ai : i ∈ N}
to obtain either an infinite antichain or an infinite strictly-decreasing chain,
as required (the conditions a ≤ b, a > b, a 6≶ b form a trichotomy).

Hence X is not wqo.

3 The Minimal Bad Sequence

(The argument structure for this section is based on Forster [1].)
Every well-founded quasiorder X that is not a wqo must have at least one bad

sequence (in fact, since all subsequences of a bad sequence are bad, it must have
infinitely-many). Examining the notion of a minimal such sequence will allow us
to write induction-style proofs that a given set is well-quasiordered.

Definition 4. Let X be a well-founded quasiorder which is not a wqo. A bad
sequence ā : N→ X is a minimal bad sequence (an MBS) if for each n ∈ N, an is
minimal from the set

{a ∈ X : there is a bad sequence whose first n terms are a0, ..., an−1, a}.
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That is, we first choose a0 to be minimal from the set of elements which are
first terms of bad sequences (this being non-empty since X is not wqo). Then we
pick a1 minimal from the set of elements for which (a0, a1) are the first two terms
of bad sequences. We continue recursively; the resulting sequence ā : N→ X must
be bad, since a good pair ai ≤ aj contradicts the definition of aj.

For example, the naturals under division (N, |) are well-founded but not wqo,
and the sequence of primes

2, 3, 5, 7, 11, ...

is an MBS. To see this, suppose the first i terms (p0, ..., pi−1) of the MBS have
already been chosen. Then the set of elements which may be appended are

{n ∈ N : n 6= 1 ∧ pj - n ∀j < i}.

The minimal elements in this set are those primes which have not already been
chosen, and in particular we can choose the least such prime.

In the spirit of the ‘minimal counterexample’, we would like to say that every
sequence which is in some sense ‘below’ an MBS must be a good sequence. And
indeed we have the following lemma:

Lemma 3. (The Minimal Bad Sequence Lemma) Let X be a well-founded qua-
siorder which is not wqo, and let ā : N→ X be an MBS as in Definition 4. Then
the subset

Y := {y ∈ X : y < an for some n ∈ N}

is wqo.

Proof. Let b̄ : N → X be an arbitrary bad sequence in X. We show that there is
some element of b̄ which is not in Y .

Suppose for the sake of contradiction that every element of b̄ is in Y ; that is,
suppose that for all i there is n such that bi < an. Take a pair (i, n) with least
possible n and consider the sequence

a0, a1, ..., an−1, bi, bi+1, bi+2, ...

— it cannot be bad, or else an is not minimal among bad continuations of the
initial segment (a0, a1, ..., an−1). Thus it contains a good pair, and this must be of
the form aj ≤ bk, since ā and b̄ are both bad.

But since bk ∈ Y , there is some l with bk < al =⇒ aj < al, and by minimality
of n we have j < n ≤ l.

So in fact aj < al is a good pair, contradicting badness of ā. Thus b̄ was not
in Y , and so every sequence in Y is good.

Hence Y is wqo.
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This lemma, as applied to the naturals under divisibility, is rather uninteresting
— for all primes p the set of natural numbers below p is the singleton {1}, so in
this case Y = {1}. This is indeed a wqo!

Nonetheless, in the general case this result is invaluable for proving that a given
set (X,≤) is wqo. The general outline of such a proof proceeds by contradiction;
we first show ≤ is reflexive, transitive and well-founded, so we can apply Lemma 3.
Then, supposing we have an MBS ā, we show that the ‘underneath’ subset given
by the Lemma is wqo, and use that to find a good pair in ā.

Well-quasiorders from well-quasiorders

The example of the power-set lift may prompt us to ask whether the condition of
being wqo has implications for other constructions. As an example (which we will
use later to prove Kruskal’s Tree Theorem), we can consider the product of two
well-quasiorders, or the set of finite subsets of a wqo.

Proposition 4. Let A and B be wqo. Then the following are also wqo:

(i) the product A×B, given the ordering

(a, b) ≤ (a′, b′) ⇐⇒ a ≤ b ∧ a′ ≤ b′.

(ii) the set A(<ω) of finite subsets of A, given the ordering

B ≤ C ⇐⇒ ∃f : B → C injective and non-decreasing.

Proof. We will show (i), and use this result to prove (ii).

(i) Let (ā, b̄) : N→ A× B be a sequence in A× B, with projections ā : N→ A
and b̄ : N→ B.

By Lemma 1, there is a non-decreasing subsequence āu of ā, since A is a wqo.
Since B is also a wqo, the corresponding subsequence b̄u of b̄ has a good pair
bu(i) ≤ bu(j). Then (au(i), bu(i)) ≤ (au(j), bu(j)) and so (ā, b̄) is good.

So A×B is a wqo.

(ii) Note that the relation ≤ on A(<ω) is reflexive (take f = 1B : B → B) and
transitive (since the composition of non-decreasing functions is itself non-
decreasing).

Moreover, it is well-founded: take a subset A ⊆ A(<ω), and let n := min{|B| :
B ∈ A}. Since B ≤ C =⇒ |B| ≤ |C|, a minimal element among the finitely-
many elements of size n is minimal in A.
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Hence we can take an MBS B̄ : N→ A(<ω). As the empty set is the minimum
element in A(<ω), none of the Bi is empty; pick bi ∈ Bi for each i, and write
Ci := Bi \ {bi}.
Note that Ci < Bi (the inclusion is injective and non-decreasing). Then by
the MBS Lemma (Lemma 3), the set

X := {Ci | i ∈ N} ⊆ A(<ω)

is wqo.

Now, we know by (i) that A×X is a wqo, and thus that the sequence (b̄, C̄)
is good. But a good pair (bi, Ci) ≤ (bj, Cj) yields a good pair Bi ≤ Bj in B̄,
contradicting the fact that B̄ is a bad sequence.

Hence A(<ω) is a wqo.

Corollary 5. If n ∈ N and (X,≤) is a wqo, then (Xn,≤) with componentwise
ordering is also wqo.

Proof. Use induction on n and the proof of Proposition 4 (i).

The proof of Higman’s Lemma (the set of finite lists of elements from a wqo,
under the relation

(a0, ..., am) ≤ (b0, ..., bn) if and only if there is a strictly increasing
function f : {0, ...,m} → {0, ..., n} such that for all 0 ≤ i ≤ m,

ai ≤ bf(i).

is wqo) is almost identical to the proof of Proposition 4 (ii). For a contradiction,
we pick an MBS and take a subsequence for which the heads of the lists form a
non-decreasing sequence. Then the set of tails of sequences are wqo by the MBS
Lemma, and so there is a good pair of tails, which together with the heads give a
good pair in the MBS.

4 Trees and homeomorphic embedding

One structure to which we can lift a quasiorder is the finite (rooted) tree, which
here we can consider as a generalisation of the finite list.

Definition 5. A finite (unlabelled) tree is a finite partially-ordered set t, whose
elements are called vertices, such that
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• t has a minimum vertex r = root(t), called the root of t, and

• for every b ∈ t, the set of vertices below b, {a : a < b} (the under-set of b),
is linearly-ordered.

In this way, we might say that trees ‘look like lists when looking down’.

Figure 1: A tree, in which a ≤ b if there is a path upwards from a to b. Here the
blue vertex has its under-set highlighted in red.

As Figure 1 suggests, there is a natural correspondence between finite trees
as defined and ‘rooted cycle-free graphs’; that is, a graph G with no cycles and
a designated vertex r, called the root. We shall not need this description in this
essay, although it is useful for visualisation.

We say ‘a is the parent of b’ if a = max{x : x < b} (which exists because the
set is a finite linear order), and we say that ‘b is a child of a’ if a is the parent of
b (see Figure 2). Note that a vertex can have multiple children.

Figure 2: A vertex in blue: its children are in green, and its parent is in red.

Some authors choose to require that the children of each vertex be themselves
linearly-ordered. The diagrams used here force a choice of ordering on each vertex’s
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Figure 3: Two drawings of the same tree.

children, in drawing them from left to right. Nevertheless, in this essay I will treat,
for example, the two trees in Figure 3 as identical.

For a vertex b ∈ t, the branch at b is the subset {a : a ≥ b} of t with the
induced partial ordering. This is itself a finite tree with root b. In fact, this allows
for an inductive definition of trees:

A tree is either a single vertex or a finite set of trees with a single
vertex below them all.

A labelled tree (with labels in the quasiorder Q) is function τ : t → Q, where
t is an unlabelled tree. We say ‘a is a vertex of τ with label q’ if a ∈ t, q ∈ Q and
τ(a) = q.

3

15

1 0

4

37 901

17 3199 8

6

Figure 4: A tree labelled with elements from the quasiorder Q = N.

Definition 6. A homeomorphic embedding (henceforth a map) f : t→ u between
finite trees is an injective function f satisfying, for all a, b ∈ t,

f(a ∧ b) = f(a) ∧ f(b),
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where a∧ b is the infimum of a and b — that is, the greatest element in both their
under-sets. If there is a map t → u write t ≤ u; since the composition of maps
is again a map, and the identity function is a map, the resulting relation ≤ is a
quasiorder.

Figure 5: A tree homeomorphically embeds into another; vertices in the range are
colored blue.

For labelled trees a non-decreasing homeomorphic embedding (henceforth also
called a map) f : τ → υ is the corresponding notion: we require that f be a map,
considered a a function t → u (ignoring labels), and that for every vertex a of τ ,
τ(a) ≤ υ(f(a)).

This relation of (non-decreasing) homeomorphic embedding generalises the re-
lation on lists we saw earlier, treating a list as a tree in which every vertex has at
most one child.

Notice that a map f of unlabelled trees is an order-embedding:

a ≤ b ⇐⇒ a ∧ b = a

⇐⇒ f(a ∧ b) = f(a) since f is injective

⇐⇒ f(a) ∧ f(b) = f(a)

⇐⇒ f(a) ≤ f(b).

In particular, this means that if f is a surjective map, it is in fact an order-
isomorphism.

5 Kruskal’s Tree Theorem

We now have all the tools we need to prove the main theorem of this essay. First,
so that we can use the MBS Lemma (Lemma 3), we must show that finite trees

14



labelled by a wqo form a well-founded quasiorder under homeomorphic embedding.
The identity function is a map, and the composition of two maps is again a map:
suppose f : τ → υ, g : υ → φ are maps. Then for a, b ∈ τ ,

g ◦ f(a ∧ b) = g(f(a ∧ b)) = g(f(a) ∧ f(b))

= g(f(a)) ∧ g(f(b))

= g ◦ f(a) ∧ g ◦ f(b).

Also,

τ(a) ≤ υ(f(a)) ≤ φ(g(f(a)))

=⇒ τ(a) ≤ φ(g ◦ f(a)).

Thus it remains to show that the relation is well-founded.

Lemma 6. Let Q be wqo. Then the set of finite trees labelled by Q, T (Q), is
well-founded under homeomorphic embedding.

Proof. For a contradiction, suppose not. Then we have a strictly-decreasing chain
in T (Q)

τ̄ := (τ1, τ2, τ3, ...), τ1 > τ2 > τ3 > ...

Consider the underlying chain of unlabelled trees ti := dom(τi). Then since N is
well-founded and ti ≥ tj =⇒ |ti| ≥ |tj|, we have a subsequence of trees of equal
size. But then, in this subsequence, the maps ti → tj are surjective, and thus
order-isomorphisms.

Hence we may restrict to the case where dom(τi) = dom(τj) := t for all i, j ∈ N.
Let the vertices of t be a1, ..., an, and consider for i = 1, ..., n the sequence

āi : N→ Q : k 7→ τk(ai)

— that is to say, āi is the sequence of labels at the vertex ai. Since Q is wqo, by
Lemma 1 there is a subsequence τ̄1 ⊆ τ̄ such that the corresponding subsequence
of ā1 is non-decreasing. Inductively, if τ̄i ⊆ τ̄ is such that the corresponding
subsequence of āj is non-decreasing for all j ≤ i, by Lemma 1 there is a subsequence
τ̄i+1 ⊆ τ̄i such that the corresponding subsequence of āi+1 is also non-decreasing.

Then if υ, υ′ are the first two elements of the subsequence τ̄n, we have υ(a) ≤
υ′(a) for all a ∈ t, and so υ ≤ υ′. But these trees are in τ̄ so υ > υ′, which is a
contradiction.

Hence in fact T (Q) is well-founded under homeomorphic embedding.

Theorem 7. (Kruskal’s tree theorem) The set of finite trees labelled by elements
of a wqo Q, T (Q), is itself wqo under homeomorphic embedding.

15



Proof. The proof proceeds very similarly to part (ii) of Proposition 4. The use of
Lemma 4 (ii) inspired by Nash-Williams’ proof [4].

For a contradiction, suppose T (Q) is not wqo. Then since T (Q) is a well-
founded quasiorder we can take an MBS t̄ : N → T (Q). As Q is quasiordered,
the sequence root(τ̄) : N → Q has a non-decreasing subsequence root(τ̄)u by
Proposition 1 (iii).

Consider the corresponding sequence τ̄u in T (Q), and define for each i the set
Ai of branches at the children of the root of τui. Define also

A :=
⋃
i∈N

Ai;

then for all r ∈ A, r ∈ Ai for some i =⇒ r < τui. Thus by the MBS Lemma A is
wqo.

Moreover, by Proposition 4 (ii) A(<ω) is also wqo. So we have a good pair
Ai ≤ Aj, which is to say a non-decreasing function

f : Ai → Aj.

Since r ≤ f(r) for all r ∈ Ai, we have maps hr : r → f(r). This lets us define a
map h : τui → τuj as follows:

• h(root(τui)) := root(τuj),

• h|r := hr for each branch r ∈ Ai.

But this means τui ≤ τuj, contradicting the fact that τ̄ is bad.
Hence T (Q) is wqo.

Finitisations of the tree theorem

The statement of Kruskal’s tree theorem as we have just proven it is not entirely
finitary in nature, as it involves quantifying over all infinite sequences of finite
trees:

For every infinite sequence of finite trees labelled by elements of a well-
quasiorder Q, there are indices i < j for which ti ≤ tj.

We seek to replace this statement with a finitisation, which should be not much
more complex than the original formulation, and yet should still be strong (in fact,
it will still not be provable in Peano Arithmetic).

To prove this finitisation from Kruskal’s tree theorem, we will need the following
lemma, which is a consequence of the Axiom of Dependent Choice:
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Lemma 8. (Kőnig’s Lemma) Every infinite tree t (where an infinite tree is defined
as in Definition 5, replacing ‘finite partial order’ with ‘infinite partial order’ and
requiring that each under-set be finite), in which every vertex has only finitely-many
children, contains an infinite path

(a0, a1, a2, ...),

where a0 = root(t) and ai+1 is a child of ai for every i ∈ N.

Proof. We define recursively a sequence ā of vertices in t. First, set a0 := root(t).
The finite set of branches at the children of a0 must contain at least one infinite
tree, or else the underlying set of t is a finite union of finite sets — but t is infinite.
So there is at least one child whose branch is infinite; let this child be a1.

Likewise, the set of branches at the children of a1 must contain at least one
infinite tree, so pick a2 to be a child whose branch is infinite. Continuing, we
obtain an infinite path (a0, a1, a2, ...) as required.

In order that our finitisation reference only finite objects, let us restrict our
attention to the case of unlabelled trees (equivalently, to the case where Q is
the singleton wqo). Kruskal’s theorem states that every infinite sequence of trees
contains a good pair ti ≤ tj. Now, we cannot simply claim that all sufficiently-long
finite sequences of finite trees contain a good pair — for every n ∈ N, we can write
down a sequence

t0, ..., tn

where |ti| = n− i for each i, and this sequence has no good pair. So we must also
consider only certain finite sequences of trees. It turns out that constraining the
size of the trees in our sequences is sufficient:

Theorem 9. (Friedman’s finite form of Kruskal’s tree theorem) Let c, k ∈ N.
Then there is a sufficiently-large n ∈ N such that whenever t0, ..., tn is a sequence
of trees satisfying

|tl| ≤ c · (k + l) for all 0 ≤ l < k,

there are i < j ≤ n such that ti ≤ tj.

Proof. For a contradiction, suppose not. That is, for every n ∈ N there is a
sequence with no good pair. We construct a tree whose vertices are given by finite
sequences (t0, ..., tl) which have no good pair, ordered by the prefix relation

(t0, ..., tl) ≤ (u0, ..., um) ⇐⇒ l ≤ m and ti = ui for all 0 ≤ i ≤ l.

Since there are bad sequences of all finite lengths, this tree is infinite. Suppose
(t0, ..., tl−1) is a vertex of this tree; there are only finitely-many trees of order at
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most c · (k+ l), and so this vertex has finitely-many children. Hence by Lemma 8,
there is an infinite path

∅, (t0), (t0, t1), (t0, t1, t2), ...

— then the infinite sequence t̄ given by t̄|[n] := tn has no good pair, contradicting
Kruskal’s tree theorem.

6 Independence proofs

It was shown by Gentzen in 1936 [2] that the Peano axioms are proven consistent
by primitive recursive arithmetic along with the statement

WO(ε0) := the ordinal ε0 is well-ordered.

(In fact, he showed that it suffices to assume the statement ‘for all quantifier-
free formulas p(x), if there is an ordinal α < ε0 for which p(α) is false, there is a
least such ordinal’.)

Here ε0 is the first fixed point of the normal function α 7→ ωα; it is the supre-
mum of the set

ω, ωω, ωω
ω

, ωω
ωω

, ...

In this way we know that (if PA is consistent) PA cannot prove WO(ε0). In-
deed, since PA interprets primitive recursive arithmetic, such a proof would imply
that PA proves its own consistency, which is false by Gödel’s second incompleteness
theorem.

Thus, to show that a statement is independent from PA, it suffices to show
that it implies WO(ε0), which appears much more tractable if we are to start from
Kruskal’s tree theorem.

[Aside: Since Peano Arithmetic and ZFfin (that is, the ZF axioms with the
Axiom of Infinity replaced with its negation, and the Axiom of Foundation stated
as the Principle of ε-Induction) are bi-interpretable — which is to say that they
are essentially relabellings of each other — I will ‘work in PA’ by doing normal
mathematics while only using finite objects.]

Tree representation of ordinals less than ε0

Every ordinal less than ε0 may be represented uniquely in its Cantor Normal Form:

α = ωα0 + ωα1 + ...+ ωαn ,

where α0 ≥ α1 ≥ ... ≥ αn are finitely-many ordinals, each strictly less than α.
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Recursively expanding out the αi in Cantor Normal form until nothing remains
but 0 and ωx yields a very tree-like structure:

ωω·2+1 + 3 = ωω
ω0

+ωω0
+ω0

+ ω0 + ω0 + ω0

and indeed this is the essence of how we will encode ordinals up to ε0 as finite
trees. If T is the set of finite trees, we define F : ε0 → T as follows:

• we define F (0) to be the singleton tree (call it 1T ), and

• given trees F (αi) for 0 ≤ i ≤ n and α = ωα0 + ωα1 + ... + ωαn , F (α) is the
tree with branches F (α0), ..., F (αn) joined to a single root.

Figure 6: The tree corresponding to ωω·2+1 + 3.

Now this encoding F is particularly nice — it is a bijection, and if t ≤ u under
homeomorphic embedding, F−1(t) ≤ F−1(u) as ordinals.

To show that F is bijective, we can define its inverse. First, let the height of a
tree, ht(t), be defined recursively by

• letting ht(1T ) = 0, and otherwise

• the height of a tree is one more than the maximum of the heights of the
branches at the children of the root.

Note that this defines height for all finite trees — for every finite tree, the size
of its branches is strictly less than the size of the whole tree, and so the recursive
definition terminates.

We now define G : T → ε0 similarly:

• G(1T ) = 0, and

• if ht(t) = k > 0, let S := {s0, ..., sn} be the set of the branches at the children
of the root. Order them so that

G(s0) ≥ G(s1) ≥ ... ≥ G(sn);
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note that G is already defined on the si since they each have height at most
k − 1. Then set

G(t) = ωG(s0) + ...+ ωG(sn).

Proposition 10. F and G as defined above are inverses. Furthermore, if t ≤ u,
then G(t) ≤ G(u).

Proof. Consider GF : ε0 → ε0. We have GF (0) = G(1T ) = 0; let α = ωα0 + ωα1 +
...+ ωαn , and suppose GF (αi) = αi, 0 ≤ i ≤ n.

Then by definition F (α) is the tree with branches F (α0), ..., F (αn) joined to a
single root, and so

GF (α) = ωGF (α0) + ...+ ωGF (αn)

= ωα0 + ...+ ωαn

= α.

So GF = id : ε0 → ε0.
Moreover, G is injective, by uniqueness and well-definition of Cantor Normal

Form. So GFG = G =⇒ FG = id : T → T .
So G = F−1. Now suppose t ≤ u; that is, there is a map f : t→ u. We proceed

by induction on ht(t).
If ht(t) = 0 then t = 1T and G(t) = 0 =⇒ G(t) ≤ G(u). Otherwise, let

ht(t) = k ≤ 1, let s0, ..., sn be the set of branches at the children of root(t), and let
v0, ..., vm be the set of branches at the children of root(u) — both in G-decreasing
order, as above. Without loss of generality, we may assume that f(root(t)) =
root(u); writing b for the branch of u at f(root(t)) we have G(b) ≤ G(u), so
G(t) ≤ G(b) =⇒ G(t) ≤ G(u).

Given this, each si is mapped by f into some vji , and since f maps root(t) to
root(u), we get for every i 6= j that

f(root(si)) ∧ f(root(sj)) = f(root(si) ∧ root(sj))

= f(root(t)) = root(u).

Hence f maps the si to distinct vji (in particular, we have that n ≤ m).
By the induction hypothesis, G(si) ≤ G(vji) for each 0 ≤ i ≤ n. Note that
G(s0) ≤ G(vj0) ≤ G(v0) by the chosen ordering on the vj.

Now we have two cases: if G(s0) < G(v0), the Cantor Normal Forms

G(t) = ωG(s0) + ..., G(u) = ωG(v0) + ...

imply that G(t) < G(u). Otherwise G(s0) = G(v0) and so G(vj0) = G(v0) =⇒
vj0 = v0 by injectivity of G. Hence by relabelling we can arrange for f to map s0
into v0.
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Now j1 6= 0 as j0 = 0. Thus, in continuing, we find that G(s1) < G(vj1) ≤
G(v1). Comparing Cantor Normal Forms again, we find either that G(t) < G(u)
or that we can relabel so that f maps s1 into v1.

We can continue this procedure; either we show that G(t) < G(u) or we find
maps si → vi for every 0 ≤ i ≤ n. But then

G(t) = ωG(s0) + ...+ ωG(sn)

≤ ωG(v0) + ...+ ωG(vn)

≤ ωG(v0) + ...+ ωG(vn) + ...+ ωG(vm)

= G(u).

Hence t ≤ u =⇒ G(t) ≤ G(u) as required.

Now that we have this nice encoding, proving WO(ε0) from Kruskal’s tree
theorem is straightforward.

Theorem 11. The implication ‘Kruskal =⇒ WO(ε0)’ is provable in PA.

Proof. Take an arbitrary sequence of (notations for) ordinals below ε0

ᾱ = (α0, α1, α2, ...).

By Proposition 10, for each of these ordinals there is a unique tree ti with G(ti) =
αi, giving a corresponding sequence t̄ = (t0, t1, t2, ...). But then by Kruskal’s tree
theorem, there is a good pair ti ≤ tj, which yields a pair αi ≤ αj. Hence ᾱ is not
a strictly-decreasing sequence. So ε0 is well-founded.

Corollary 12. Kruskal’s theorem is not provable in PA.

Moreover, it was shown by Simpson in 1985 [5] that the finitisation Theorem 9
also proves WO(ε0), although the proof is more involved. This is because one
must show that, given a strictly-decreasing sequence in ε0, we can build a strictly-
decreasing sequence for which the size of the corresponding trees grows no faster
than linearly.

Definition 7. Given an ordinal α < ε0, let its size |α| be the size of the corre-
sponding finite tree F (α).

Call a strictly-decreasing sequence of ordinals ᾱ = (α0, α1, ...) slow if there are
c, k ∈ N such that

|αi| ≤ c · (k + i) for all i ∈ N.

We will sketch a proof of Simpson’s result. The results I will assume are:
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• To show WO(ε0), it is enough to show that there is no primitive recursive
(PR) strictly-decreasing sequence in ε0 (that is, a sequence definable by a
primitive recursive function).

• For every primitive recursive function f : N→ N, there is a primitive recur-
sive function h : N2 → ωω satisfying

– h(i, j) > h(i, j + 1) for all j < f(i),

– |h(i, j)| ≤ c · (i+ j + 1) for some constant c.

Reference for these can be found in [5]. Armed with these facts, we have the
following lemma.

Lemma 13. Let ᾱ = (α0, α1, ...) be a strictly-decreasing PR sequence in ε0. Then
there is a slow strictly-descending PR sequence β̄ = (β0, β1, ...) in ε0.

Proof. Since ᾱ is PR, so is the function f : n 7→ |αn|. Thus we have a PR function
h : N2 → ωω by satisfying

• h(i, j) > h(i, j + 1) for all j < f(i) = |αi|,

• |h(i, j)| ≤ c · (i+ j + 1) for some constant c.

With this h we can define the sequence β̄ by

βk := ωω · αi + h(i, j),

where i, j are given by

k =
i−1∑
r=0

|αr|+ j, j < |αi| .

Intuitively, β̄ ‘spreads out’ the terms of ᾱ so that the sizes of the ordinals in
the sequence doesn’t grow too quickly. Indeed, we find that

|βk| = |ωω · αi + h(i, j)|
≤ 4 |αi|+ c · (i+ j + 1)

≤ (c+ 4) · (1 + k).

So β̄ is a slow strictly-descending PR sequence in ε0.

From here, the proof that our finitisation implies WO(ε0) is much the same as
it was for Kruskal’s tree theorem itself.

Theorem 14. The implication ‘Friedman’s finite form of Kruskal =⇒ WO(ε0)’
is provable in PA.
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Proof. We work in PA. For a contradiction, suppose that in fact we have a PR
strictly-decreasing sequence of (notations for) ordinals below ε0

ᾱ = (α0, α1, α2, ...);

by Lemma 13 we can build a slow PR strictly-decreasing sequence

β̄ = (β0, β1, β2, ...).

Now the corresponding sequence of finite trees t̄ with ti := G(βi) satisfies the
conditions of Theorem 9, and so there is a good pair ti ≤ tj. But then βi ≤ βj,
and hence β̄ is not strictly-descending, which is a contradiction.

So in fact, Theorem 9 implies WO(ε0) as required.

Corollary 15. PA cannot prove Friedman’s finite form of Kruskal’s tree theorem.

So finally we have a statement entirely about finite sets, but which is not prov-
able in PA. Interestingly, although PA is not strong enough to prove Friedman’s
finite form of Kruskal (here given with c = 1 for brevity):

∀k p(k) ≡ ∀k∃m such that if t0, ..., tm is a sequence of trees with
|tr| ≤ k + r, then ti ≤ tj for some i < j ≤ m,

it can prove p(k), given a fixed k [6].

7 Conclusion

We arrived at the definition of well-quasiorder in refining the class of well-founded
quasi-orders so that their well-foundedness is preserved in lifting the quasi-order
to more complicated structures. By providing several equivalent definitions, we
were able to show that this class is closed under several common constructions,
including

• finite products under componentwise ordering,

• set of finite subsets or finite lists ordered by non-decreasing embeddings, and
eventually

• the set of finite trees labelled by our original set and ordered by homeomor-
phic embedding.
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This last result was strong enough to prove the consistency of Peano Arith-
metic, even when reduced to a statement referencing only finite objects. In this
way we found a comparatively-simple statement in finite combinatorics which is
unprovable in Peano Arithmetic. Thus we see vividly that Gödel’s incompleteness
theorems do not only apply to unnatural and concocted statements, such that
their implication may be ignored in the course of ‘working’ mathematics, but that
they apply also to propositions encountered in other fields of mathematics.

I close by considering two directions in which the results I have presented here
have been extended.

1. The technique of encoding ordinals by finite trees can be used to encode ordinals
far larger than ε0, and indeed almost any system for encoding countable ordi-
nals uses trees. Simpson [5] describes an encoding up to the Feferman-Schütte
ordinal Γ0, defined to be the least ordinal not reachable by the Veblen hierarchy
of normal functions φα:

• φ0(β) := ωβ,

• φα+1(β) := βth fixed point of φα.

That is, Γ0 is the the least fixed point of the map β 7→ φβ(0). Note that in this
notation ε0 = φ1(0).

2. The class of well-quasiorders (X,≤) is not closed under taking infinitary struc-
tures such as the set of α-sequences of elements of X for ordinals α ≥ ω (This
would be a generalisation of Higman’s Lemma). Attempting to refine the defini-
tion to obtain a class closed under such operations yield the better-quasiorders.
Several quasi-orders have been shown to be wqo by proving them to be better-
quasiorders: for example, the class of scattered linear orders (proven by Richard
Laver, 1971).

References

[1] T. E. Forster, N. Bowler and M. Seisenberger An Introduction to WQO and
BQO Theory http://dpmms.cam.ac.uk/~tf/BQObok.pdf/ [accessed January
2020].

[2] G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie Mathematische
Annalen, 112, 1936.

[3] J. B. Kruskal Well-quasiordering, the tree theorem, and Vazsonyi’s Conjecture.
Transactions of the American Mathematical Society, American Mathematical
Society, 1960.

24



[4] C. St.J. A. Nash-Williams On well-quasiordering finite trees Proceedings of the
Cambridge Philosophical Society, 1963.

[5] S. G. Simpson Non-provability of certain combinatorial properties of finite trees
Harvey Friedman’s Research on the Foundations of Mathematics, Studies in
Logic and the Foundations of Mathematics, 1985.

[6] R. L. Smith The consistency strengths of some finite forms of the Higman and
Kruskal theorems Harvey Friedman’s Research on the Foundations of Mathe-
matics, 1985.

25


