

Varieties of relative monad

Andrew Slattery

Transfer Interview, 2021

For the purposes of this presentation, let V be a symmetric monoidal closed category with compatible

- ▶ tensor product $\otimes -: V \times V \rightarrow V$ with monoidal structure I, α, λ, ρ ,
- ▶ internal hom $[-,-]: V^{op} \times V \rightarrow V$ with closed structure I, L, i, j, and
- symmetry with components $\sigma_{A,B} : A \otimes B \to B \otimes A$,

so that for all $A \in ob V$ we have an adjunction

$$-\otimes A\dashv [A,-].$$

LKock (1970)

Enriched and Strong Monads (Kock 1970)

A monad (T, η, μ) is

- <u>enriched</u> if for all A, B we have a map $T_{A,B} : [A, B] \rightarrow [TA, TB]$ compatible with the closed structure, and
- ▶ strong if for all A, B we have a map $t_{A,B} : A \otimes TB \rightarrow T(A \otimes B)$ compatible with the monoidal structure.

Proposition

A monad is enriched if and only if it is strong, with correspondence:

$$t_{A,B}$$
 is the transpose of $A \xrightarrow{con} [B, A \otimes B] \xrightarrow{T} [TB, T(A \otimes B)]$,

 $T_{A,B}$ is the transpose of $[A,B] \otimes TA \xrightarrow{t} T([A,B] \otimes A) \xrightarrow{Tev} TB$.

LKock (1970)

Commutative Monads (Kock 1970) We can define a costrength $s_{A,B} : TA \otimes B \rightarrow T(A \otimes B)$ by

 $s_{A,B} = T\sigma_{B,A} \circ t_{B,A} \circ \sigma_{TA,B}.$

Now a strong monad is commutative if the map

$$\phi_{A,B}:TA\otimes TB\to T(A\otimes B)$$

- defined to be the composite

$$TA \otimes TB \xrightarrow{s} T(TA \otimes B) \xrightarrow{T_t} TT(A \otimes B) \xrightarrow{\mu} T(A \otimes B)$$

- is equal to the composite

$$TA \otimes TB \stackrel{t}{\longrightarrow} T(A \otimes TB) \stackrel{T_s}{\longrightarrow} TT(A \otimes B) \stackrel{\mu}{\longrightarrow} T(A \otimes B).$$

└─Kock (1970)

UNIVERSITY OF LEEDS

Symmetric Monoidal Monads (Kock 1970)

It can be shown that the map $\phi_{A,B} : TA \otimes TB \to T(A \otimes B)$ defined above gives T the structure of a lax monoidal functor. If T is a lax monoidal functor and furthermore η, μ are monoidal natural transformations, we say T is a <u>monoidal</u> monad. If moreover we have

$$T\sigma_{A,B} \circ \phi_{A,B} = \phi_{B,A} \circ \sigma_{TA,TB},$$

we say T is a symmetric monoidal monad.

└─Kock (1970)

Commutative iff Symmetric Monoidal

Proposition

A monad $T: V \rightarrow V$ is commutative if and only if it is symmetric monoidal; given a commutative monad we can define structure maps via

$$\phi_{\cdot} \coloneqq \eta_{I} : I \to TI, \ \phi_{A,B} \coloneqq \mu_{A \otimes B} \circ Tt_{A,B} \circ s_{A,TB},$$

and given a symmetric monoidal monad we can define strength and costrength maps by

$$t_{A,B} \coloneqq \phi_{A,B} \circ (\eta_A \otimes 1_B), \ s_{A,B} \coloneqq \phi_{A,B} \circ (1_A \otimes \eta_B).$$

└─Kock (1970)

Summary of Implications

Kock's work gives

- T enriched \iff T strong,
- T enriched/strong \implies T lax monoidal functor, and
- T commutative \iff T symmetric monoidal.

Let \mathbb{C}, \mathbb{D} be symmetric monoidal closed categories and let $J: \mathbb{D} \to \mathbb{C}$ be a strict monoidal functor (in applications J is usually even an inclusion).

A relative monad $(T, \eta, (-)^*)$ along J comprises:

- for each object $A \in \text{ob} \mathbb{D}$ an object $TA \in \text{ob} \mathbb{C}$ and morphism $\eta_A : JA \to TA$, and
- ▶ an extension $(-)^* : \mathbb{C}(JA, TB) \to \mathbb{C}(TA, TB)$ satisfying

•
$$\eta_A^* = \mathbf{1}_{TA}$$
 for all A ,

•
$$f^* \circ \eta_A = f$$
 for all $f : JA \to TB$, and

• $g^* \circ f^* = (g^* \circ f)^*$ for all $JA \to TB$, $g: JB \to TC$.

It can be shown that, given these constraints, T is a functor $\mathbb{D} \to \mathbb{C}$ and the η_A form a natural transformation $\eta: J \Longrightarrow T$. Furthermore, a relative monad along 1_C is exactly an ordinary monad.

My work hereon is to define analogous notions of Kock's 'enriched, strong, commutative, symmetric monoidal' for relative monads.

Enrichment and Strength

UNIVERSITY OF LEEDS

Enriched Relative Monads

A relative monad T along J is <u>enriched</u> if the mapping $(f: JA \rightarrow TB) \mapsto (f^*: TA \rightarrow TB)$ internalises to a morphism

 $*:[JA,TB]\rightarrow [TA,TB],$

satisfying some coherence diagrams. For example, we require that the diagram

commutes, corresponding to the equation $f^* \circ \eta = f$.

Relative Monads

Enrichment and Strength

Strong Relative Monads

A relative monad T along J is strong if it comes equipped with a map

$$t_{A,B}: JA\otimes TB \to T(A\otimes B)$$

satisfying some coherency diagrams. For example, coherency with $(-)^*$ is given by, for all $f : A \rightarrow A'$, $g : JB \rightarrow TB'$, commutativity of

$$JA \otimes TB \xrightarrow{Jf \otimes g^*} JA' \otimes TB'$$

$$t \downarrow \qquad t \downarrow$$

$$T(A \otimes B) \xrightarrow{(t \circ (Jf \otimes g))^*} T(A' \otimes B')$$

where the bottom arrow is the result of applying the extension $(-)^*$ to the composite

$$J(A \otimes B) = JA \otimes JB \xrightarrow{Jf \otimes g} JA' \otimes TB' \xrightarrow{t} T(A \otimes B')$$

Enrichment and Strength

Enriched Implies Strong

A relative monad is strong if it is enriched, with strength $t_{A,B}: JA \otimes TB \rightarrow T(A \otimes B)$ defined as the transpose of the composite

$$JA \xrightarrow{con} [JB, JA \otimes JB] = [JB, J(A \otimes B)]$$
$$\xrightarrow{[1,\eta]} [JB, T(A \otimes B)] \xrightarrow{*} [TB, T(A \otimes B)].$$

However, things go wrong in the other direction; if we attempt to define the transpose of $* : [JA, TB] \rightarrow [TA, TB]$ via $t_{A,B}$, we look for a map

$$[JA, TB] \otimes TA \rightarrow TB.$$

Now [JA, TB] is not necessarily of the form JX for some $X \in ob \mathbb{D}$, and so we cannot apply any $t_{X,A}$ to the domain $[JA, TB] \otimes TA$.

Enrichment and Strength

UNIVERSITY OF LEEDS

T is still lax monoidal

Let T be enriched (and therefore strong). We have costrength $s_{A,B}$ as before and we can now define a map

$$\phi_{A,B}: TA \otimes TB \to T(A \otimes B)$$

in the relative setting, as the transpose of the composite

$$TA \xrightarrow{con} [JB, TA \otimes JB] \xrightarrow{[1,s]} [JB, T(A \otimes B)] \xrightarrow{*} [TB, TA \otimes TB].$$

It can be shown that this $\phi_{A,B}$ along with $\phi_{I} := \eta_{I} : JI = I \rightarrow TI$, gives T the structure of a lax monoidal functor $\mathbb{D} \rightarrow \mathbb{C}$.

└─ Commutativity and Monoidality

Commutative Relative Monads

An enriched relative monad T along $J : \mathbb{D} \to \mathbb{C}$ is <u>commutative</u> if we have

$$T\sigma_{A,B}\circ\phi_{A,B}=\phi_{B,A}\circ\sigma_{A,B},$$

where $\phi_{A,B}: TA \otimes TB \rightarrow T(A \otimes B)$ is defined (as before) as the transpose of

 $TA \xrightarrow{con} [JB, TA \otimes JB] \xrightarrow{[1,s]} [JB, T(A \otimes B)] \xrightarrow{*} [TB, T(A, \otimes B)].$

Commutativity and Monoidality

Symmetric Monoidal Relative Monads

We say a relative monad T is monoidal if:

- 1. As a functor, T is lax monoidal with structure maps $\phi_{A,B}$,
- 2. the maps η_A satisfy

a. ϕ . = η_I : JI = $I \rightarrow TI$,

b. $\phi_{A,B} \circ (\eta_A \otimes \eta_B) = \eta_{A \otimes B} : JA \otimes JB = J(A \otimes B) \rightarrow T(A \otimes B).$

3. the extension $(-)^*$ satisfies

a.
$$(\phi_{\cdot})^* = 1_{TI}$$
,
b. $(\phi_{A',B'} \circ (f \otimes g))^* \circ \phi_{A,B} = \phi_{A',B'} \circ (f^* \otimes g^*)$ for all $f: JA \to TA'$ and $g: JB \to TB'$.

Note that in fact condition (2a) implies (3a).

We say that T is symmetric monoidal if we furthermore have

$$T\sigma_{A,B} \circ \phi_{A,B} = \phi_{B,A} \circ \sigma_{TA,TB}.$$

Commutativity and Monoidality

Commutative Implies Symmetric Monoidal

Theorem

If T is a commutative relative monad, T is a symmetric monoidal relative monad, with structure maps

 ϕ . := η_I , $\phi_{A,B}$ the transpose of * \circ [1, $s_{A,B}$] \circ con_{TA,JB}.

- ► The symmetry condition follows immediately from the definition of commutativity. Conditions (2a,3a) follow from the above definition of the structure map φ. and (2b,3b)—after some calculation—from the definition of φ_{A,B} and commutativity.
- Again we have difficulty going the other way; we cannot define an enrichment *: [JA, TB] → [TA, TB] merely given that T is symmetric monoidal.

Conclusion

Summary of Implications for Relative Monads

My work here gives

- T enriched \implies T strong,
- T enriched \implies T lax monoidal functor, and
- T commutative \implies T symmetric monoidal.