The Eilenberg-Moore bicategory over a relative pseudomonad

Andrew Slattery

September 19, 2023

Definition 1. Let \mathbb{C}, \mathbb{D} be bicategories and $J: \mathbb{D} \rightarrow \mathbb{C}$ a pseudofunctor. A relative pseudomonad ($T, i,{ }^{*} ; \eta, \mu, \theta$) along J comprises:

- for every object $X \in \mathbb{D}$ an object $T X \in \mathbb{D}$ and map $i_{X}: J X \rightarrow T X$ in \mathbb{C}, and
- a family of functors $(-)_{X, Y}^{*}: \mathbb{C}(J X, T Y) \rightarrow \mathbb{C}(T X, T Y)$ for $X, Y \in \mathbb{D}$,
along with three families of invertible 2-cells:
- $\eta_{f}: f \rightarrow f^{*} i$ for $f: J X \rightarrow T Y$,
- $\mu_{f, g}:\left(f^{*} g\right)^{*} \rightarrow f^{*} g^{*}$ for $f: J X \rightarrow T Y, g: J W \rightarrow T X$, and
- $\theta_{X}: i_{X}^{*} \rightarrow 1_{T X}$ for $X \in \mathbb{D}$,
such that the following two coherence diagrams commute:
(i) for $f: J X \rightarrow T Y, g: J W \rightarrow T X, h: J V \rightarrow T W$,

(ii) for $f: J X \rightarrow T Y$,

$$
\begin{equation*}
\underbrace{f^{*} \underbrace{\left.\right|_{f^{*} \theta}}_{\substack{\left.\eta_{f}\right)^{*}}}\left(f^{*} i\right)^{*} \xrightarrow{\mu_{f, i}} f^{*} i^{*}}_{\sim} \tag{2}
\end{equation*}
$$

We construct the Eilenberg-Moore bicategory over T, comprising pseudoalgebras as objects, algebra morphisms and algebra 2-cells.

Definition 2. Let T be a relative pseudomonad along $J: \mathbb{D} \rightarrow \mathbb{C}$. A pseudoalgebra $\left(A,{ }^{a} ; \tilde{a}, \hat{a}\right)$ comprises:

- an object $A \in \mathbb{C}$,
- a family of functors $(-)_{X}^{a}: \mathbb{C}(J X, A) \rightarrow \mathbb{C}(T X, A)$ for $X \in \mathbb{D}$,
along with two families of invertible 2-cells
- $\tilde{a}_{f}: f \rightarrow f^{a} i$ for $f: J X \rightarrow A$,
- $\hat{a}_{f, g}:\left(f^{a} g\right)^{a} \rightarrow f^{a} g^{*}$ for $f: J X \rightarrow A, g: J W \rightarrow T X$,
such that the following two coherence diagrams commute:
(i) for $f: J X \rightarrow A, g: J W \rightarrow T X, h: J V \rightarrow T W$,

(ii) for $f: J X \rightarrow A$,

Definition 3. Let T be a relative pseudomonad along $J: \mathbb{D} \rightarrow \mathbb{C}$, and let $\left(A,^{a}\right),\left(B,{ }^{b}\right)$ be pseudoalgebras over T. A lax morphism of algebras (f, \bar{f}) between $\left(A,^{a}\right)$ and $\left(B,^{b}\right)$ comprises:

- a map $f: A \rightarrow B$ in \mathbb{C}, and
- a family of 2-cells $\bar{f}_{g}:(f g)^{b} \rightarrow f g^{a}$ for $g: J X \rightarrow A$,
such that the following two coherence diagrams commute:
- for $g: J X \rightarrow A$ and $h: J W \rightarrow T X$,

- for $g: J X \rightarrow A$,

If all the \bar{f}_{g} are invertible, we say (f, \bar{f}) is a pseudomorphism, and if they are all identities, we say (f, \bar{f}) is a strict morphism.
Definition 4. Let T be a relative pseudomonad along $J: \mathbb{D} \rightarrow C$, let $\left(A,{ }^{a}\right)$ and $\left(B,{ }^{b}\right)$ be pseudoalgebras over T, and let (\underline{f}, \bar{f}) and $\left(f^{\prime}, \bar{f}^{\prime}\right)$ be morphisms of algebras between $\left(A,{ }^{a}\right)$ and $\left(B,{ }^{b}\right)$. An algebra 2-cell $\alpha:(f, \bar{f}) \Longrightarrow\left(f^{\prime}, \overline{f^{\prime}}\right)$ is a 2-cell $\alpha: f \Longrightarrow f^{\prime}$ such that the following diagram commutes:

- for $g: J X \rightarrow A$,

$$
\begin{align*}
& (f g)^{b} \xrightarrow{(\alpha g)^{b}}\left(f^{\prime} g\right)^{b} \\
& \bar{f}_{g} \downarrow \tag{7}\\
& f g^{a} \xrightarrow[\alpha g^{a}]{ }{ }^{\mid f^{\prime} g_{g}^{\prime}}{ }^{\prime}
\end{align*}
$$

Proposition 1. There is a bicategory Ps-T-Alg whose objects are pseudoalgebras, whose 1-cells are lax morphisms of algebras, and whose 2-cells are algebra 2-cells.

Proof. We first show that for any pseudoalgebras $\left(A,{ }^{a}\right)$ and $\left(B,{ }^{b}\right)$, we have a hom-category of lax morphisms Ps- T - $\operatorname{Alg}_{l}\left(\left(A,{ }^{a}\right),\left(B,^{b}\right)\right)$. Since algebra 2-cells are just 2-cells in the underlying bicategory satisfying a property, it suffices to show that 1_{f} is an algebra 2-cell:

and that if α and β are algebra 2-cells, then so is $\beta \alpha$:

Hence indeed we have the required hom-categories.
Next, we want identity functors $1_{\left(A,{ }^{a}\right)}: \mathbb{1} \rightarrow \operatorname{Ps}-T-\operatorname{Alg}_{l}\left(\left(A,{ }^{a}\right),\left(A,{ }^{a}\right)\right)$. We need to show that 1_{A} can be given the structure of a lax morphism of algebras. We equip it with the 2 -cell $\left(\overline{1}_{A}\right)_{g}:\left(1_{A} g\right)^{a} \xrightarrow{\sim} g^{a} \stackrel{\sim}{\leftarrow} 1_{A} g^{a}$. The first coherence condition becomes

which we fill in as follows:

using two naturality squares and two associativity coherences from the underlying bicategory. The second coherence condition becomes

which we fill in as follows:

using two naturality squares and one associativity coherence from the underlying bicategory. Thus we can define our identity functor $1_{(A, a)}: \mathbb{1} \rightarrow \operatorname{Ps}-T-\operatorname{Alg}_{l}\left(\left(A,^{a}\right),\left(A,{ }^{a}\right)\right)$ as picking out the lax (in fact pseudo-) morphism $\left(1_{A}, \overline{1}_{A}\right)$.

We also need to define horizontal composition: for every triple of objects $\left(A,{ }^{a}\right),\left(B,{ }^{b}\right)$ and $\left(C,{ }^{c}\right)$ a functor

Given (f, \bar{f}) and $\left(f^{\prime}, \bar{f}^{\prime}\right)$ we define the horizontal composite $(f, \bar{f}) \circ\left(f^{\prime}, \bar{f}^{\prime}\right)$ to be $\left(f f^{\prime}, \overline{f f^{\prime}}\right)$, where $\overline{f f^{\prime}}{ }_{g}$ for $g: J X \rightarrow A$ is defined as the composite

$$
\overline{f f^{\prime}}{ }_{g}:\left(\left(f f^{\prime}\right) g\right)^{c} \xrightarrow{\sim}\left(f\left(f^{\prime} g\right)\right)^{c} \xrightarrow{\bar{f}_{f^{\prime} g}} f\left(f^{\prime} g\right)^{b} \xrightarrow{f \bar{f}_{g}^{\prime}} f\left(f^{\prime} g^{a}\right) \stackrel{\sim}{\leftarrow}\left(f f^{\prime}\right) g^{a} .
$$

We must check that this composite actually gives $f f^{\prime}$ the structure of a lax morphism. Let $g: J X \rightarrow A$ and $h: J W \rightarrow T X$. The first coherence condition becomes

which we fill in as follows:

using six naturality squares, two pentagon axioms for the bicategory associator, and Equation 5
once each for f and f^{\prime}. The second coherence condition becomes

which we can fill in as follows:

using three naturality squares, one pentagon axioms for the bicategory associator, and Equation 6 once each for f and f^{\prime}. Hence $\left(f f^{\prime}, \overline{f f^{\prime}}\right)$ is a lax morphism and our horizontal composition functor is defined on 1-cells.

On 2-cells, since algebra 2-cells are just 2-cells satisfying a property, it suffices to check that the horizontal composite of algebra 2-cells is again an algebra 2-cell. So let $\alpha:(d, \bar{d}) \Longrightarrow(f, \bar{f})$ and $\alpha^{\prime}:\left(d^{\prime}, \bar{d}^{\prime}\right) \Longrightarrow\left(f^{\prime}, \bar{f}^{\prime}\right)$ be algebra 2 -cells. We need to verify the commutativity of

Using the definition of the lax morphism structures on $d d^{\prime}$ and $f f^{\prime}$, we can fill this diagram in
as follows:

with six naturality squares and an instance of Equation 7 for each of α and α^{\prime}. Thus horizontal composition is also defined on 2-cells. Furthermore, horizontal composition inherits functoriality from the underlying bicategory, since being an algebra 2-cell is a property.

We now define associator and unitor 2-cells by the same 2-cells in the underlying bicategory. We must check that these are algebra 2-cells. For the left unitor, we need

and we can fill this in as follows:

using a naturality square and two triangle identities for the underlying bicategory. Likewise, for
the right unitor we need
and we can fill this in as follows:

using a naturality square and two triangle identities for the underlying bicategory. Finally, for the associator we need

$$
\begin{aligned}
& (((f g) h) k)^{d} \xrightarrow{\sim}((f(g h)) k)^{d} \\
& \underset{(f g) h_{k}}{\downarrow} \downarrow \underset{\downarrow}{\downarrow(g h)_{k}} \\
& ((f g) h) k^{a} \longrightarrow(f(g h)) k^{a}
\end{aligned}
$$

and we can fill this in as follows:

using two naturality squares and two pentagon axioms for the underlying bicategory. Hence the associator and unitors are algebra 2-cells; their pentagon and triangle axioms follow form them holding in the underlying bicategory.

Hence $\mathrm{Ps}-T-\mathrm{Alg}_{l}$ as defined is indeed a bicategory.

