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Definition 1. Let C, D be bicategories and J : D — C a pseudofunctor. A relative pseudomonad
(T,i,*;n, u, 6) along J comprises:

o for every object X € D an object TX € D and map iy : JX — TX in C, and
o a family of functors (—)% y: C(JX,TY) — C(TX,TY) for X,Y €D,
along with three families of invertible 2-cells:
o np: f— frifor f:JX = TY,
o pypg i (ffg) — frgtfor f: JX - TY, g: JW — TX, and
o Oy :i% = 1py for X €D,
such that the following two coherence diagrams commute:

(i) for f: JX > TY, g: JW - TX, h: JV = TW,
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(ii) for f: JX — TY,
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We construct the Eilenberg-Moore bicategory over T, comprising pseudoalgebras as objects,
algebra morphisms and algebra 2-cells.
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Definition 2. Let T be a relative pseudomonad along J : D — C. A pseudoalgebra (A,%;a,a)
comprises:



e an object A € C,

o a family of functors (—)% : C(JX,A) - C(TX,A) for X € D,
along with two families of invertible 2-cells

o ay: f— frifor f:JX — A,

o Gy, (fl9) — frgtfor f:JX = A, g: JW = TX,
such that the following two coherence diagrams commute:

(i) for f: JX = A, g: JW = TX, h:JV = TW,
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(ii) for f: JX — A,
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Definition 3. Let 7 be a relative pseudomonad along J : D — C, and let (4,¢), (B,%) be
pseudoalgebras over T. A laz morphism of algebras (f, f) between (A, %) and (B,%) comprises:

e amap f: A— Bin C, and
« a family of 2-cells f, : (fg)* = fg for g: JX — A,
such that the following two coherence diagrams commute:

o forg: JX - Aand h: JW — TX,

((fg)*h)® (f9)°h*
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o forg: JX — A,

fg =22 (fo)bi 1o (fgu)i



If all the fg are invertible, we say (f, f) is a pseudomorphism, and if they are all identities, we

say (f, f) is a strict morphism.

Definition 4. Let T be a relative pseudomonad along J : D — C, let (A,?) and (B,%) be
pseudoalgebras over T, and let (f, f) and (f’, f’) be morphisms of algebras between (A, %) and
(B,%). An algebra 2-cell a: (f, f) = (f',f")isa 2-cell a: f = f’ such that the following
diagram commutes:

e forg: JX — A,
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Proposition 1. There is a bicategory Ps-T—Algl whose objects are pseudoalgebras, whose 1-cells
are lax morphisms of algebras, and whose 2-cells are algebra 2-cells.

Proof. We first show that for any pseudoalgebras (A, %) and (B,?), we have a hom-category of
lax morphisms Ps-T-Alg, ((4,“), (B,%)). Since algebra 2-cells are just 2-cells in the underlying
bicategory satisfying a property, it suffices to show that 1; is an algebra 2-cell:
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and that if o and 8 are algebra 2-cells, then so is Sa:
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Hence indeed we have the required hom-categories.

Next, we want identity functors 14.) : 1 — Ps-T-Alg ((A,?),(A4,%)). We need to show
that 1, can be given the structure of a lax morphism of algebras. We equip it with the 2-cell
(iA)g i (1,49)* = g* < 1, The first coherence condition becomes

(1g)h)" (1g)2h*
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which we fill in as follows:

(1g)°h)* 122 (1g)h
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((1g9)h)* —=— (g®h)* —="— g°h*
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using two naturality squares and two associativity coherences from the underlying bicategory.
The second coherence condition becomes

lg —5 (1g)% —>— g%
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which we fill in as follows:
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using two naturality squares and one associativity coherence from the underlying bicategory.
Thus we can define our identity functor 1 4.y : 1 — Ps-T-Alg,((A,*),(4,?)) as picking out the
lax (in fact pseudo-) morphism (14,1 ,).

We also need to define horizontal composition: for every triple of objects (A, %), (B,%) and
(C,°) a functor

o : Ps-T-Alg ((B,?), (C,°)) x Ps-T-Alg,((A,), (B,)) — Ps-T:Alg,((4,%), (C,°)).

Given (f, f) and (f’, f') we define the horizontal composite (f, f)o(f’, f’) tobe (ff’, ff’), where
ff’q for g: JX — A is defined as the composite

_ ~ frg ffq ~
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We must check that this composite actually gives ff’ the structure of a lax morphism. Let
g:JX — Aand h: JW — TX. The first coherence condition becomes
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which we fill in as follows:
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using six naturality squares, two pentagon axioms for the bicategory associator, and Equation 5



once each for fand f’. The second coherence condition becomes
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which we can fill in as follows:
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(ffg 1y f((f9")i) «—=— (f(f'g%))i
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using three naturality squares, one pentagon axioms for the bicategory associator, and Equation 6
once each for fand f’. Hence (ff’, ff) is a lax morphism and our horizontal composition functor
is defined on 1-cells.

On 2-cells, since algebra 2-cells are just 2-cells satisfying a property, it suffices to check that
the horizontal composite of algebra 2-cells is again an algebra 2-cell. So let « : (d, d) = (f,f)
and o : (d',d’) = (f’,f’) be algebra 2-cells. We need to verify the commutativity of

(-0’

((dd)g) =2 ((£1)g)°
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Using the definition of the lax morphism structures on dd” and ff’, we can fill this diagram in



as follows:
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with six naturality squares and an instance of Equation 7 for each of o and o’. Thus horizontal
composition is also defined on 2-cells. Furthermore, horizontal composition inherits functoriality
from the underlying bicategory, since being an algebra 2-cell is a property.

We now define associator and unitor 2-cells by the same 2-cells in the underlying bicategory.
We must check that these are algebra 2-cells. For the left unitor, we need

((1Lhg)t —— (fg)°
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and we can fill this in as follows:
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using a naturality square and two triangle identities for the underlying bicategory. Likewise, for



the right unitor we need

and we can fill this in as follows:
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using a naturality square and two triangle identities for the underlying bicategory. Finally, for
the associator we need

((fg)h)k)* —— ((f(gh))k)®
(fg)h)k* —=— (f(gh))k*



and we can fill this in as follows:
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((fg)(hE)) ~

(g(hk))? = (f((gh)k))

(f
f.ﬂhki J{f(ghr)k

flg(hk))e —— f((gh)k)*

b in
l \ lfghk

(f9)(hk)" —=— f(g(hk)®)

J{f(ghk)

(fg)(hk*) —=— f(g(hk®))
~ f((gh)k®)
((fg)h)k* ——=— (f(gh))k®

using two naturality squares and two pentagon axioms for the underlying bicategory. Hence the
associator and unitors are algebra 2-cells; their pentagon and triangle axioms follow form them
holding in the underlying bicategory.

Hence Ps-T-Alg, as defined is indeed a bicategory. O



