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Introduction: the Presheaf Functor

Idea: We would like to give a monad structure to the presheaf
construction

C > PshC := [CP, Set].

We have an obvious choice of unit; for every (locally small)
category there is the Yoneda embedding

C L PshC: A C(—, A).



Algebras over a Relative 2-Monad

Llntroduction

UNIVERSITY OF LEEDS

The Presheaf Functor (cont.)

For the multiplication M : Psh PshC — Psh C, we take the left Kan
extension of 1pg, ¢ along the Yoneda embedding:

PshC —Y— PshPshC
x:> i M:=Lany 1
Psh C

[This extension is guaranteed to exist, since PshC is cocomplete.]
It is also worth noting the size issue here—we now need C to be
small.
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The Presheaf Functor (cont.)

We should not forget to check that Psh is a functor: it turns out
that for an F:C — D we can define

Psh(F) :PshC — PshDD
as the left adjoint of the pre-composition functor
[D°P, Set] [(COF’ Set],

since Set has all small colimits. (Somewhat more explicitly, Psh(F)
is the left Kan extension of Y o F:C - D — PshD along the
Yoneda embedding).
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Now in 2D

Unfortunately, this is not enough to give us a genuine monad. The
first problem is that none of the monad conditions hold on the
nose: for example, the diagram

PshC —Y— PshPshC
1 :M
Psh C

commutes only up to the 2-cell shown.
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Size Issues

The second problem is more fundamental: Psh isn't really an
endofunctor. For example, the category of presheaves on a small
category is only locally-small.

Writing Cat for the 2-category of small categories, and CAT for the
2-category of locally-small categories, we have a 2-functor

Psh : Cat — CAT

To get around this issue, we will need to develop our definitions in
the so-called ‘relative setting'.
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One-dimensional Ordinary Monads
Let (T,e,m) be a monad on a category C. An algebra (A, a) over
T consists of a carrier object A€ obC and algebra map a: TA—- A
making two diagrams commute:

A—— TA T?°A —— TA
x - |
A TA—— A

An algebra morphism (A, a) — (B, b) is given by an arrow
f: A— B commuting with the algebra maps:

TA 5 TB

| I

A——B
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Relative Monads (Altenkirch, Chapman, Uustalu)

Let D, C be categories and J: D — C a functor. A relative monad
T along J consists of:

» For every AcobDD an object TA€obC and map ea: JA— TA,
» For every f: JA— TB an extension f*: TA - TB, such that
(JA=S> TA)* = (TA - TA),
(JA-S 1AL 1By = (ua LS TB) v,
(TA S 185 10) = (UA 55 TB 5 TO) A g

These three equations correspond to the equations for an ordinary
monad.
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A relative monad along the identity 1¢ is a monad, and vice versa;
in one direction, a relative monad (T,e, *) is given the structure of
a functor via

(TAL 7B8) = (AL B TB)",
and multiplication given by
(T2A " TA) = (TA -5 TA)".

In the other direction, given a monad (T, e, m) we can define the
extension by

(AL 1By = (TALL T2B 2 TB).
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It is worth noting that the three relative monad equations:
> ep =1,
» ffoepa="f forall f: JA— TB,
» (ffog)*=f*og*forallg:JA>TB, f:JB—>TC
together imply that T is a functor T :ID - C, and that the

collection of e4: JA — TA forms a natural transformation
e:J—>T.
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Algebras over a Relative Monad

Let (T,e,*) be a relative monad along J:ID — C. An algebra
(A,?) over T consists of a carrier object A € obC and for every
f:JZ—>Aamap f?: TZ — A, such that

(Jz 512 5 Ay = (uz L p) v,
(7Y 5 72 2 Ay = (uy & 72 2 A)7 vr g

An algebra morphism (A,?) — (B,?) is given by amap f: A~ B
such that for all g: JZ - A we have that f o g? = (f o g)":

° b
77 (8" . p

N~
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An algebra over a relative monad along the identity 1¢ is equivalent
to an algebra over an ordinary monad, and the morphisms also
correspond. The equivalence is given by the definitions

(TA - A) = (A5 A)2,
z-5 A =1z 5 1742 A).

We still have a category of algebras: the composition of two
algebra morphisms is again an algebra morphism in the relative
setting:

77 (foofiog)” y C

~
(fog)® %
\\ B
A
A

15}
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1D Relative Setting: Summary

» Relative monad (T,e,*) along functor J: D - C,
» Algebras (A,?) over T and algebra morphisms
(A,9) £, (B,?), forming

» Category of algebras T-Alg over a relative monad.
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2D: Degrees of Strictness

» A strict 2-monad (T, e, m) consists of a strict 2-endofunctor
T on a strict 2-category and strict 2-natural transformations
e, m satisfying the monad laws strictly.

» A fully weak 2-monad (T, e, m) consists of a pseudofunctor T
on a bicategory and pseudonatural transformations e, m
satisfying the monad laws up to specified isomorphisms with
coherence conditions.

Often we want to work somewhere in the middle: consider our
example of Psh. The presheaf functor is between the strict
2-categories Cat, CAT but the e, m we defined are not strict.

For the sake of time, in this talk we will take our 2-monads to be
strict.
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Algebras over a 2-monad (Lack)

Let (T,e,m) be a 2-monad on a 2-category C. A pseudoalgebra
(A, a) over T consists of a carrier object A € obC and algebra map
a: TA - A making two diagrams commute up to invertible 2-cells

A—<5 TA T2A - TA
xz‘%la Tal/ —2 la
A TA —— A

called the unit and associativity of the pseudoalgebra, and these
satisfy two coherence diagrams. If these 2-cells are in fact
identities, we call (A, a) a strict algebra.
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Morphisms of Algebras

We have now three levels of strictness for algebra morphisms. A
f.f : :
lax morphism of algebras (A, a) — (B, b) consists of a morphism

A-"s B and a 2-cell

TA Iy B
L] b

satisfying two coherence conditions. If f is invertible we call (f, ?)
a pseudomorphism, and if it is the identity we call (f,f) a
strict morphism of algebras.
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Algebra 2-Cells

An algebra 2-cell (f,f) - (g, &) between algebra morphisms
(f.7),(g,8): (A a) - (B,b) is a 2-cell f — g for which

Tf
Tf T/ﬁﬂ\’
TA —— TB = TA -T¢g+» TB
| ﬂ b . ﬂ b
A—f— B AT>B
NG %
g

With algebras, algebra morphisms and algebra 2-cells we can form
various 2-categories (strict when the underlying 2-category is
strict).
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Various 2-Categories

Morphisms
Lax Pseudo- Strict
T-Alg, T-Alg T-Alg,
Ps-T-Alg, Ps-T-Alg Ps-T-Alg,

Strict algebras
Pseudoalgebras
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Relative Pseudomonads (Fiore, Gambino, Hyland, Winskel)

A relative pseudomonad (T, e, *) along 2-functor J: D - C
consists of, for every A€ obD, an object TA € obC and 1-cell
ea: JA— TA, and for every A, B a functor

(=) :C(JA, TB) - C(TA, TB), equipped with natural families of
invertible 2-cells

(JA-S TA)* % (TA L TA),
(JA-S T TB) 5 (ua L TB) v,

Hf.g

(TA—> B TC)=>(JA—> B8 TC)* Vf,g,

satisfying two coherence equations. For this talk, | will henceforth

consider only (strict) relative 2-monads, where the 0,7, i are all
identities.
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Algebras over Relative 2-monads

Let (T,e, m) be a relative 2-monad along J:D - C. A
pseudoalgebra (A, a) over T consists of a carrier object A€ obC
and functors (-)?: C(JZ,A) > C(TZ,A), along with natural
families of invertible 2-cells

(JZ—)A) (JZ—> TZ—)A) v,
Jy = Tz—>A)a£> (TYg—> 77 5 A) v, g,

satisfying two coherence diagrams. These 2-cells correspond to the
two 2-cells in the definition of a pseudoalgebra over an ordinary
2-monad. If both these families of 2-cells are made up of identities,
we have a strict algebra. For this talk, | will henceforth consider
only strict algebras.
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Algebra Morphisms

A Iax morphism (f, ) of algebras (A,?) — (f 9

(B,") is an arrow

Al.B together with a natural* family of 2-cells

(JZ—>A—>B)b (725 A By vz A

satisfying two equalities of 2-cells (next slide). *Here ‘naturality’

/

means that for any 2-cell g == g', we have

(f-a?) O_g = ’?g’ °© (f'a)b-
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Diagrams of 2-Cells

> Naturality: (f-a?)ofy = ?g’ o (f-a)b.

(fog)®

0g)P (Fa)b
77 (8" . p E— l

TZ (fog’)? B
e |7 7
7 by .
gla <& A

A

> Coherence with the unit: )_‘g ez = 1lfog for every g : JZ — A.

fog
. (Fog)Y —
JZ — TZ ————— Y = JA ¥H/' Y

\ U? / fog
& f
A
> Coherence with the extension: ?g -h* = ?gaoh o (?g -h)b forevery g:JZ - A h:JY - TZ.

((fog)bonyP

n* (fog)® MG

Y 25 T7Z ————~ 3 B = TY (fog@oh)P B
7 7 ;
A ﬂ / (g‘m ﬂ f
A

A
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If all the f 2-cells are invertible, we call (f,f) a pseudomorphism,
and if they are identities, we call (f,f) a strict morphism.

Proposition

A lax (pseudo-, strict) morphism of algebras over a relative
2-monad along the identity is equivalent to a lax (pseudo-, strict)
morphism of algebras over an ordinary monad.

For example, since bo Tf := fb and a:= 14, we have
TA—'"5s 1Bt B = TA— " B

SN B

as part of the equivalence in one direction.
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The Category of Algebras and Algebra Morphisms

We can define the composite of two lax (pseudo-, strict) morphisms

(£.7) (F.F)

(4,9 0 (8,2 C0 (¢
as (/o f,FTof): (A,?) > (C,) where (F7o f)g = f'rog o (f'- Fy):
(Fofog)©

TZ

N \ /
N
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This composition is associative (by pasting another triangle on
top) and we have identities for each (A,?) given by (14,14) where
(1A)g = ].ga.

77 18 4
\ ﬂlga
g’ 1
A

Hence we have a category of (strict) algebras over a relative
2-monad and lax (pseudo-, strict) morphisms between them.
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Algebra 2-Cells

An algebra 2-cell (f,f) - (f,f') between algebra morphisms
(F,F),(f,F): (A2?) > (B,b) is a 2-cell f - f for which

(a-g?)of=Ffo(ag)P

(fog)b
Fog)® m
77 (8" . p - 7Z (Fogy® . B
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The 2-Category of Algebras over a Relative 2-Monad

Because the algebra 2-cells are just 2-cells from the underlying 2-category
with an extra property, to show that “algebras, algebra morphisms and
algebra 2-cells” form a 2-category we simply need to show the collection
of algebra 2-cells is suitably closed (associativity, interchange, etc. follow
from the structure of the underlying 2-category). We need to show:

>

>

the identity 2-cell (,f) = (f,f) is an algebra 2-cell,
the composite [ o a of two algebra 2-cells
(f,F) == (f,h) £, (f,f,) is again an algebra 2-cell,

the left whiskering a.-f : (fof,fiof) = (fhof,frbof) of an
algebra 2-cell wih an algebra morphism is again an algebra 2-cell,

the right whiskering f-«a: (fofi,fofy) = (fofh,fof) of an
algebra 2-cell with an algebra morphism is again an algebra 2-cell.
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|dentities are Algebra 2-Cells

Since (17-g)b = L(fog)bs

and so indeed the identity is an algebra 2-cell.
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Composites are Algebra 2-Cells

Since ((Boa)-g)P=(B-g)%0(a-g)",

(fog)®
og)? m
77 U® . p - (flo ) — B
7 A
a fﬂ /
g
A ’lﬁa 5 2 /3 fz
(fog)
<<m
= TZ (hog)? —> B
|
g’ f2

and so indeed the composite of algebra 2-cells is again an algebra
2-cell.
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Left Whiskerings are Algebra 2-Cells

We have the series of equalities

flofog)®€ fofog)C
17 (fiofog) c def Tz — (fio og)? c
1
-~ (Fog)P \ /flj
7w ple
g? g2 \ f
A
A
(fyofog)® (fiofog)€
X a(roe)<|| wr o
z TZ (fofog)S C 2 TZ (fofog)® B
— %
(fom)" \ /fz' fof
NP a
g g fpof
A
A A

(where the equality * follows from « being an algebra 2-cell) and
so indeed « - f is an algebra 2-cell.
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Right Whiskerings are Algebra 2-Cells

We have the equalities

(fofyog)®

(fofiog)<

a
[[E3

(fofog)€
+ J(Fae)®
= TZ (fofzog); — C
(hog)P f

(where * follows from « being an algebra 2-cell, and t from the
naturality condition) and so indeed right whiskerings are algebra
2-cells.
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2-Categories of Algebras, Algebra Morphisms and Algebra
2-Cells

So we have verified that algebras over a relative 2-monad, lax
(pseudo-, strict) morphisms and algebra 2-cells form a 2-category.
We have 2-categories as shown:

Morphisms
Lax Pseudo-  Strict
T-Alg;, T-Alg T-Alg,

Strict algebras
Pseudoalgebras

Adding sufficiently-many invertible 2-cells to the previous slides in
order to define Ps-T-Alg, etc. is left as an exercise to the reader.
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