RELATIVE MONADS ON SYMMETRIC MULTICATEGORIES

ANDREW SLATTERY

We compare the definition of a strong relative monad between multicategories (defined by Slattery in [Sla23]) and of a strong relative monad between monoidal categories, as defined by Uustalu in [Uus10]).
Definition 0.1. A relative monad $\left(T, i,{ }^{*}\right)$ along a functor $J: \mathbb{D} \rightarrow \mathbb{C}$ comprises

- for each $A \in \operatorname{ob} \mathbb{C}$ an object $T A$ and map $i_{A}: J A \rightarrow T A$, and
- for each $f: J A \rightarrow T B$ a map $f^{*}: T A \rightarrow T B$
such that we have

$$
\begin{aligned}
f & =f^{*} i, \\
\left(f^{*} g\right)^{*} & =f^{*} g^{*}, \\
i^{*} & =1
\end{aligned}
$$

for all $g: J A \rightarrow T B, f: J B \rightarrow T C$.

T has the structure of a functor from \mathbb{D} to \mathbb{C}, with action on maps given by

$$
T f:=(i f)^{*}
$$

$$
T(\bullet \xrightarrow{f} \bullet) \quad=\quad(\bullet \xrightarrow{f} \bullet \xrightarrow{i} \bullet)^{*}
$$

Indeed, a relative monad along the identity $1_{\mathbb{C}}$ is equivalent to an ordinary monad, with multiplication $m_{X}: T T X \rightarrow T X$ defined by

$$
m_{X}:=\left(1_{T X}\right)^{*}
$$

In the rest of this document we abbreviate 'relative monad' to 'RM'.

1. Strength

Definition 1.1. A (multicategorical) strong $R M\left(T, i,{ }^{t}\right)$ along a multifunctor J : $\mathbb{D} \rightarrow \mathbb{C}$ between multicategories comprises

- for each $A \in \operatorname{ob} \mathbb{C}$ an object $T A$ and map $i_{A}: J A \rightarrow T A$, and
- for each arity $n, 1 \leq j \leq n$ and $f: A_{1}, \ldots, A_{j-1}, J X, A_{j+1}, \ldots, A_{n} \rightarrow T Y$ a $\operatorname{map} f^{j}: A_{1}, \ldots, T X, \ldots, A_{n} \rightarrow T Y$, where $(-)^{j}$ is natural in all arguments,

[^0]such that we have
\[

$$
\begin{aligned}
f & =f^{j} \circ_{j} i, \\
\left(f^{j} \circ_{j} g\right)^{j+k-1} & =f^{j} \circ_{j} g^{k}, \\
i^{1} & =1
\end{aligned}
$$
\]

for all $g: A_{1}, \ldots, J X, \ldots, A_{m} \rightarrow T Y, f: B_{1}, \ldots, J Y, \ldots, B_{n} \rightarrow T C$.
Note that such a strong RM is also a (unary) RM, with $(-)^{*}$ given by $(-)^{1}$.
Definition 1.2. A J-strong $R M(T, i, t)$ along a lax monoidal functor $(J, \phi): \mathbb{D} \rightarrow$ \mathbb{C} between monoidal categories comprises

- a relative monad $\left(T, i,{ }^{*}\right)$ along J, and
- a natural family of maps $t_{X, Y}: J X \times T Y \rightarrow T(X \times Y)$
such that the following two diagrams commute:

(expressing coherence with the monoidal structure), and the following diagrams also commute:

(expressing coherence with the monad structure).
Given a representable multicategory \mathbb{C}, we have objects $I, X \times Y$ and maps $u:-\rightarrow I, \theta: X, Y \rightarrow X \times Y$ such that the induced maps
$-\circ_{j} u: \mathbb{C}(\ldots, I, \ldots ; Y) \rightarrow \mathbb{C}(\ldots,-, \ldots ; Y),-\circ_{j} \theta: \mathbb{C}(\ldots, X \times Y, \ldots ; Z) \rightarrow \mathbb{C}(\ldots, X, Y, \ldots ; Z)$
are isomorphisms. The maps λ, ρ, α may in this setting be defined by the equations

$$
\begin{array}{r}
\lambda \circ \theta \circ_{1} u=1, \\
\rho \circ \theta \circ_{2} u=1, \\
\alpha \circ \theta \circ_{1} \theta=\theta \circ_{2} \theta .
\end{array}
$$

Proposition 1.3. Suppose that \mathbb{D} and \mathbb{C} are representable multicategories. Then a strong $R M$ between these multicategories is a J-strong $R M$ between \mathbb{D} and C considered as monoidal categories, with strength map $t: J X \times T Y \rightarrow T(X \times Y)$ defined by

$$
t \circ \theta:=(i \circ J \theta)^{2}: J X, T Y \rightarrow J(X \times Y)
$$

Proof. We have four properties to check. For the λ condition, we need

$$
T \lambda \circ t \circ(\phi . \times 1)=\lambda
$$

We precompose with $\theta \circ_{1} u$, a bijection on 1-cells, and obtain:

$$
\begin{aligned}
T \lambda \circ t \circ(\phi . \times 1) \circ \theta \circ_{1} u & =T \lambda \circ t \circ \theta \circ_{1} \phi \cdot \circ_{1} u \\
& =T \lambda \circ t \circ \theta \circ_{1} J u \\
& =T \lambda \circ(i \circ J \theta)^{2} \circ_{1} J u \\
& =(i \circ J \lambda)^{1} \circ(i \circ J \theta)^{2} \circ_{1} J u \\
& =\left((i \circ J \lambda)^{1} \circ i \circ J \theta\right)^{2} \circ_{1} J u \\
& =(i \circ J \lambda \circ J \theta)^{2} \circ_{1} J u \\
& =\left(i \circ J \lambda \circ J \theta \circ_{1} J u\right)^{1} \\
& =\left(i \circ J\left(\lambda \circ \theta \circ_{1} u\right)\right)^{1} \\
& =(i \circ J 1)^{1} \\
& =i^{1}=1 \\
& =\lambda \circ \theta \circ_{1} u,
\end{aligned}
$$

as required.
Next, for the α condition, we need

$$
T \alpha \circ t \circ(\phi \times 1)=t \circ(1 \times t) \circ \alpha
$$

This time we precompose with $\theta \circ_{1} \theta$ and obtain:

$$
\begin{aligned}
T \alpha \circ t \circ(\phi \times 1) \circ \theta \circ_{1} \theta & =T \alpha \circ t \circ \theta \circ_{1} \phi \circ_{1} \theta \\
& =T \alpha \circ t \circ \theta \circ_{1} J \theta \\
& =T \alpha \circ(i \circ J \theta)^{2} \circ_{1} J \theta \\
& =(i \circ J \alpha)^{1} \circ(i \circ J \theta)^{2} \circ_{1} J \theta \\
& =\left((i \circ J \alpha)^{1} \circ i \circ J \theta\right)^{2} \circ_{1} J \theta \\
& =(i \circ J \alpha \circ J \theta)^{2} \circ_{1} J \theta \\
& =\left(i \circ J \alpha \circ J \theta \circ_{1} J \theta\right)^{3} \\
& =\left(i \circ J\left(\alpha \circ \theta \circ_{1} \theta\right)\right)^{3} \\
& =\left(i \circ J\left(\theta \circ_{2} \theta\right)\right)^{3} \\
& =\left(i \circ J \theta \circ_{2} J \theta\right)^{3} \\
& =\left((i \circ J \theta)^{2} \circ_{2}(i \circ J \theta)\right)^{3} \\
& =(i \circ J \theta)^{2} \circ_{2}(i \circ J \theta)^{2} \\
& =t \circ \theta \circ_{2}(t \circ \theta) \\
& =t \circ(1 \times t) \circ \theta \circ_{2} \theta \\
& =t \circ(1 \times t) \circ \alpha \circ \theta \circ_{1} \theta,
\end{aligned}
$$

as required.
We move on to the two monad structure conditions. For the unit condition, we need

$$
t \circ(1 \times i)=i \circ \phi
$$

Precomposing with θ, we obtain:

$$
\begin{aligned}
t \circ(1 \times i) \circ \theta & =t \circ \theta \circ_{2} i \\
& =(i \circ J \theta)^{2} \circ_{2} i \\
& =i \circ J \theta \\
& =i \operatorname{circ} \phi \circ \theta,
\end{aligned}
$$

as required.
Finally, for the extension condition, given

$$
t \circ(1 \times k)=l \circ \phi
$$

we need to show that

$$
t \circ\left(1 \times k^{*}\right)=l^{*} \circ t
$$

Precomposing with θ we obtain:

$$
\begin{aligned}
t \circ\left(1 \times k^{*}\right) \circ \theta & =t \circ \theta \circ_{2} k^{1} \\
& =(i \circ J \theta)^{2} \circ_{2} k^{1} \\
& =\left((i \circ J \theta)^{2} \circ_{2} k\right)^{2} \\
& =\left(t \circ\left(1 \times k^{*}\right) \circ \theta\right)^{2} \\
& =(l \circ \phi \circ \theta)^{2} \\
& =(l \circ J \theta)^{2} \\
& =\left(l^{1} \circ i \circ J \theta\right)^{2} \\
& =l^{1} \circ(i \circ J \theta)^{2} \\
& =l^{*} \circ t,
\end{aligned}
$$

as required. Hence a multicategorical RM between representable multicategories is a monoidal RM.

References

[Sla23] Andrew Slattery. Pseudocommutativity and lax idempotency for relative pseudomonads, 2023.
[Uus10] Tarmo Uustalu. Strong Relative Monads (Extended Abstract), 2010. https://cs.ioc. ee/~tarmo/papers/uustalu-cmcs10short.pdf.

School of Mathematics, University of Leeds
Email address: mmawsl@leeds.ac.uk

[^0]: Date: September 26, 2023.

