
RELATIVE MONADS ON

SYMMETRIC MULTICATEGORIES

ANDREW SLATTERY

Definition 0.1. A relative monad (T, i, ∗) along a functor J : D→ C comprises

• for each A ∈ ob C an object TA and map iA : JA→ TA, and
• for each f : JA→ TB a map f∗ : TA→ TB

such that we have

f = f∗i,

(f∗g)∗ = f∗g∗,

i∗ = 1

for all g : JA→ TB, f : JB → TC.

T has the structure of a functor from D to C, with action on maps given by
Tf := (if)∗. Indeed, a relative monad along the identity 1C is equivalent to an
ordinary monad, with multiplication mX : TTX → TX defined by

mX := (1TX)∗.

In what follows we abbreviate ‘relative monad’ to ‘RM’.

1. Strength

In this section, we define a notion of RM suitable for the multicategorical setting.
This notion of strong RM recovers the usual notion of strong monad on a monoidal
category when the multicategory is representable and the RM is along the identity.
We go on to derive, when T is a strong RM, the following chain of implications:

T is an idempotent strong RM

T is a commutative RM

T is a symmetric multi-RM

T lifts to an RM along CMon(C)→ CMon(C).

Definition 1.1. A multicategory C comprises

• a class of objects ob C,
• for all n and objects X1, ..., Xn, Y a class of n-ary maps C(X1, ..., Xn;Y );

an element of which is denoted by f : X1, ..., Xn → Y ,
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• for each object A an identity map 1A ∈ C(A;A),
• composition

C(X1, ..., Xn;Y )× C(W1,1, ...,W1,m1
;X1)× ...× C(Wn,1, ...,Wn,mn

;Xn)

→ C(W1,1, ...,Wn,mn
;Y )

(f, g1, ..., gn) 7→ f ◦ (g1, ..., gn)

for all arities n,m1, ...,mn and all objects Y,X1, ..., Xn,W1,1, ...,Wn,mn in
C,

where the identities and composition satisfy associativity and identity axioms.
We furthermore call C a symmetric multicategory if for all n we have actions of

the symmetric group Sn on the class of n-ary maps

(−)σ : C(X1, ..., Xn;Y )→ C(Xσ(1), ..., Xσ(n);Y )

f 7→ fσ

compatible with the composition.

Note that any multicategory can be restricted to a category by considering only
the unary maps. We can also define for f : X1, ..., Xn → Y , g : W1, ...,Wm → Xj

the single-index composite f ◦j g by

f ◦ (1, ..., 1, g, 1, ..., 1) : X1, ..., Xj−1,W1, ...,Wm, Xj+1, ..., Xn → Y.

1.1. Strong relative monads. We seek to generalise Kock’s notion of a strong
monad on a monoidal category. A strong monad structure on a monoidal category
is given by a map

tX,Y : X ⊗ TY → T (X ⊗ Y )

satisfying some axioms. To define a suitable notion of strong RM in the multicat-

egorical setting, we extend an RM’s extension maps C(JX, TY )
(−)∗−−−→ C(TX, TY )

to general n-ary hom-categories

C(B1, ..., X, ..., Bn;TY )
(−)j−−−→ C(B1, ..., TX, ..., Bn;TY ),

which we call strengthenings. To use this to construct the map t in the ordinary
and representable case, we begin with the unit

i : X ⊗ Y → T (X ⊗ Y ).

Passing to the underlying multicategory, this corresponds to a map

i : X,Y → T (X ⊗ Y ).

We can strengthen this map in the second argument to obtain

i2 : X,TY → T (X ⊗ Y ).

Now passing back to the original monoidal category we have found a strength map
X ⊗ TY → T (X ⊗ Y ), and one can check that this satisfies the strength axioms.
This derivation justifies the use of the terminology ‘strength’ to refer to the maps

C(B1, ..., JX, ..., Bn;TY )
(−)j−−−→ C(B1, ..., TX, ..., Bn;TY )

below.

Definition 1.2. A strong RM (T, i, t) along a map of multicategories J : D → C
comprises
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• for each A ∈ ob C an object TA and map iA : JA→ TA, and
• for each arity n, 1 ≤ j ≤ n and f : A1, ..., Aj−1, JX,Aj+1, ..., An → TY a

map f j : A1, ..., TX, ..., An → TY , where (−)j is natural in all arguments,

such that we have

f = f j ◦j i,

(f j ◦j g)j+k−1 = f j ◦j gk,
i1 = 1

for all g : A1, ..., JX, ..., Am → TY , f : B1, ..., JY, ..., Bn → TC.

We see that a strong RM restricts to an RM along the map between the categories
of unary maps J : D → C. Thus, on unary maps, T has a functor structure given
by Tf := (i ◦ f)1.

For the next result, consider maps of the form JX1, ..., JXn → TY , i.e. maps
which can be strengthened in any index. In this case we can extend our notation
from strengthenings in only one argument f 7→ f j to strengthenings in any subset
of the domain f 7→ fS for S ⊆ [n]. Here we introduce the notation −◦S gj to mean
‘compose with the map gj at index j for all j ∈ S’.

Proposition 1.3. Let T be a strong RM. Then for each n, subset S ⊆ [n] and
JX1, ..., JXn → TY we have a map fS : X1, ..., Xn → TY , where

Xj =

{
TXj j ∈ S
JXj j /∈ S

such that (−)S is natural in all arguments, and such that we have

f = fS ◦S i,
(fS1 ◦j g)S2+j−1 = fS1 ◦j gS2 ,

for all g : JX1, ..., JXm → TYj, f : JY1, ..., JYn → TZ when j ∈ S1.

Proof. The action (−)S is defined by applying the strengths (−)j for j ∈ S from
left to right. We must now prove the two equalities. To show that f = fS ◦S i, we
apply the equality f j ◦j i = f in turn for each of the elements of S. To show that
(fS1 ◦j g)S2+j−1 = fS1 ◦j gS2 , let S1 = U t U ′ where U = S1 ∩ [j]. Then

(fS1 ◦j g)S2+j−1 = (fU ◦j g)(S2+j−1)t(U ′+m−1)

= (fU ◦j gS2)(U
′+m−1)

= fS1 ◦j gS2 .

�

Definition 1.4. A multifunctor F : D→ C between multicategories comprises for
each hom-category D(A1, ..., An;B) a function

D(A1, ..., An;B)→ C(FA1, ..., FAn;FB) : f 7→ Ff,

such that the following two equalities hold:

• F1A = 1FA, and
• F (f ◦j g) = Ff ◦j Fg.
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Every multifunctor restricts to an ordinary functor between the categories of
unary maps in D and those in C.

Proposition 1.5. Let T be a strong RM along a multifunctor J : D→ C. Then T
is a multifunctor.

Proof. We can define the action of T on morphisms by (i ◦ J−)[n]. To show that
T1A = 1TA, we have

T1A := (iA ◦ J1A)1 = (iA ◦ 1JA)1 = i1A = 1TA.

To show that T (f ◦j g) = Tf ◦j Tg, we have

T (f ◦j g) := (i ◦ J(f ◦j g))[n+m−1] = (i ◦ Jf ◦j Jg)[n+m−1]

= ((i ◦ Jf)[j−1] ◦j Jg)j...(n+m−1)

= ((i ◦ Jf)[j] ◦j (i ◦ Jg))j...(n+m−1)

= ((i ◦ Jf)[j] ◦j (i ◦ Jg)[m])(j+m−1)...(n+m−1)

= (i ◦ Jf)[n] ◦j (i ◦ Jg)[m]

= Tf ◦j Tg.

Hence a strong RM is a multifunctor. �

1.2. Idempotent strong relative monads.

Definition 1.6. Let T be a strong RM. We say T is idempotent if the strengthen-
ings are inverse to precomposition with the unit: the maps

C(..., JX, ...;TY ) C(..., TX, ...;TY )

−◦ji

(−)j

are inverses for all n and all objects A1, ..., X, ..., An;Y . That is, as well as the
equality f j ◦j i = f (which holds for all strong RMs), we also have (g ◦j i)j = g.

1.3. Commutative relative monads. When we defined the subset strengths
(−)S we had to choose an order in which to apply the individual strengths. Com-
mutativity says that any choice of order gives the same result.

Definition 1.7. Let T be a strong RM. We say T is a commutative RM if for all
f : A1, ..., JX, ..., JY, ..., An → TZ and 1 ≤ j < k ≤ n we have

fkj = f jk : ..., TX, ..., TY, ...→ TZ.

Note that being able to commute any two strengths lets us reorder the application
of n strengths in any way we choose. This lets us manipulate the subset strengths
more freely, as the following proposition shows.

Proposition 1.8. Let T be a commutative RM, let f : JX1, ..., JXn → TY be a
map, let S ⊆ [n], let gj : JZj1, ..., JZjmj

→ TXj for j ∈ S, and let Sj ⊆ [mj ].
Then we have

(fS ◦S gj)
⋃
(Sj+kj) = fS ◦S g

Sj

j ,

where the kj are the required index shifts so that the strengths line up.
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Proof. Since T is commutative, we can rearrange the indices of S so that any of
them is rightmost. Thus if we start from (fS ◦S gj)

⋃
(Sj+kj), for each j ∈ S in turn,

we can

• shuffle S so that j is rightmost, then
• apply the axioms of a strength to bring the indices of Sj inside the paren-

theses.

Having done this for each j ∈ S, we obtain fS ◦S g
Sj

j as required. �

Having defined idempotent strong RM and commutative RMs, we now prove the
implication between them.

Theorem 1.9. If T is an idempotent strong RM, then T is commutative.

Proof. Suppose T is idempotent and let f : A1, ..., JX, ..., JY, ..., An → TZ. Then

fkj = (f j ◦j i)kj = (f jk ◦j i)j = f jk,

and so T is commutative. �

1.4. Multi relative monads.

Definition 1.10. Let T be an RM. We say T is a multi-RM if

• T is a multifunctor, and
• the multifunctoriality of T is compatible with the monad structure,

which is to say that we have

• i ◦ Jf = Tf ◦ (i, ..., i) for any f : X1, ..., Xn → Y , and
• whenever h◦Jf = Tf ′ ◦ (g1, ..., gn) we also have h∗ ◦Tf = Tf ′ ◦ (g∗1 , ..., g

∗
n):

TX1, ..., TXn TX ′1, ..., TX
′
n

TY TY ′

g∗1 ,...,g
∗
n

Tf ′Tf

h∗

We further say that T is a symmetric multi-RM if we have (Tf)σ = T (fσ) for all
n-ary f and σ ∈ Sn.

Theorem 1.11. Let T be a commutative RM along a symmetric multifunctor J :
D→ C. Then T is a symmetric multi-RM.

Proof. Suppose T is commutative. Since T is strong, T is a multifunctor. We have
two conditions to check to show T is a multi-RM. For the first, we simply have

i ◦ Jf = (i ◦ Jf)[n] ◦ (i, ..., i) = Tf ◦ (i, ..., i).

Note that this holds for any strong RM, not necessarily commutative. For the
second condition, suppose h ◦ Jf = Tf ′ ◦ (g1, ..., gn). Then

h∗ ◦ Tf = h∗ ◦ (i ◦ Jf)[n] = (h∗ ◦ i ◦ Jf)[n]

= (h ◦ Jf)[n] = (Tf ′ ◦ (g1, ..., gn))[n]

= ((i ◦ f ′)[n] ◦ (g1, ..., gn))[n]

†
= (i ◦ Jf ′)[n] ◦ (g∗1 , ..., g

∗
n)

= Tf ′ ◦ (g∗1 , ..., g
∗
n),
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where the step marked † holds by Proposition 1.8 and the commutativity of T . To
show that T is furthermore symmetric, we have

(Tf)σ := ((i ◦ Jf)[n])σ = ((i ◦ Jf)σ)σ(1)...σ(n)

= ((i ◦ Jf)σ)[n] = (i ◦ Jfσ)[n]

= T (fσ).

Hence indeed T is a symmetric multimonad. �

1.5. Commutative monoids in C.

Definition 1.12. Let C be a symmetric multicategory. The category CMon(C) of
commutative monoids in C comprises

• commutative monoid objects (M,m) consisting of an object M ∈ C and
n-ary maps

mn : M, ...,M →M

for each n, such that
– mn ◦k mp = mn+p−1 for all 1 ≤ k ≤ n, and
– (mn)σ = mn for all σ ∈ Sn.

• monoid morphisms f : (M,m)→ (M ′,m′) comprising a map f : M → M ′

such that

M, ...,M M

M ′, ...,M ′ M ′

mn

m′n

f,...,f f

commutes for all n.

We have a forgetful functor U : CMon(C)→ C with U(M,m) = M and Uf = f .

Proposition 1.13. If J : D → C is a symmetric multifunctor between symmetric
multicategories, then J lifts to a functor J̃ : CMon(D)→ CMon(C).

Proof. The map J̃ sends an object (M,m) to (JM, Jm); we see that this is a
commutative monoid object since

Jmn ◦k Jmp = J(mn ◦k mp) = Jmn+p−1

(Jmn)σ = J(mn)σ = Jmn

by the symmetric multifunctoriality of J . On morphisms we have J̃f = Jf ; we
need to check that if f : (M,m)→ (M ′,m′) is a monoid morphism, then so is Jf .
Indeed, we have

Jm′n ◦ (Jf, ..., Jf) = J(m′n ◦ (f, ..., f)) = J(f ◦mn) = Jf ◦ Jmn,

as required. Functoriality follows from the functor structure of J . So indeed if J is
a symmetric multifunctor then it lifts to J̃ : CMon(D)→ CMon(C). �

Theorem 1.14. Let (T, i, ∗) be a symmetric multi-RM along the symmetric mul-

tifunctor J : D → C. Then T lifts to a monad (T̃ , i, ∗) along J̃ : CMon(D) →
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CMon(C) such that

UT̃ = TU,

U(i) = i,

U(f∗) = f∗.

Proof. Suppose T is a symmetric multimonad along J : D → C. Let T̃ (M,m) =
(TM, Tm); this is a commutative monoid object due to the symmetric multifunctor
structure on T , as above in Proposition 1.13.

The map i : JM → TM lifts to a monoid morphism i : (JM, Jm)→ (TM, Tm)
because the diagram

JM, ..., JM JM

TM, ..., TM TM

Jmn

Tmn

i,...,i i

commutes for all n, being one of the axioms of a multimonad.
Given a monoid morphism f : (JM, Jm)→ (TM ′, Tm′) we have that

JM, ..., JM JM

TM ′, ..., TM TM ′

Jmn

Tm′n

f,...,f f

commutes for all n. Since T is a multimonad, we therefore also have that

TM, ..., TM TM

TM ′, ..., TM TM ′

Tmn

Tm′n

f∗,...,f∗ f∗

commutes for all n, and so f∗ is also a monoid morphism. Hence T indeed lifts to
the required monad (T̃ , i, ∗) on CMon(C). �
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