RELATIVE MONADS ON
SYMMETRIC MULTICATEGORIES

ANDREW SLATTERY

Definition 0.1. A relative monad (T,1,*) along a functor J : D — C comprises

e for each A € obC an object TA and map i4 : JA — TA, and
e foreach f: JA—TB amap f*:TA—TB

such that we have

f= 1
(f*9)" = 19",
=1

forallg: JA—TB, f: JB —TC.

T has the structure of a functor from D to C, with action on maps given by
Tf := (if)*. Indeed, a relative monad along the identity lc is equivalent to an
ordinary monad, with multiplication mx : TTX — TX defined by

mx = (]-TX)*'

In what follows we abbreviate ‘relative monad’ to ‘RM’.

1. STRENGTH

In this section, we define a notion of RM suitable for the multicategorical setting.
This notion of strong RM recovers the usual notion of strong monad on a monoidal
category when the multicategory is representable and the RM is along the identity.
We go on to derive, when T is a strong RM, the following chain of implications:

T is an idempotent strong RM

|

T is a commutative RM

!

T is a symmetric multi-RM

!

T lifts to an RM along CMon(C) — CMon(C).

Definition 1.1. A multicategory C comprises

e a class of objects obC,
e for all n and objects X1,..., X,,,Y a class of n-ary maps C(Xy, ..., X,,; Y);
an element of which is denoted by f: X1,...,X,, = Y,
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e for each object A an identity map 14 € C(4; A),
e composition

C(Xh,Xn,Y) X C(Wl,la-”an,ml;Xl) X ... X C(Wn,l; -~'7Wn,mn;Xn)

— C(W171, ceny Wn,mn ; Y)
(f,91,:9n) = fo (g1, 9n)
for all arities n,m,...,m, and all objects Y, X1,..., X0, W1 1, ..., Wy, in
C’
where the identities and composition satisfy associativity and identity axioms.
We furthermore call C a symmetric multicategory if for all n we have actions of
the symmetric group S, on the class of n-ary maps

(—)U : C(Xl, ceny Xn; Y) — C(Xg(l), ceny XU(n)? Y)
f= s
compatible with the composition.
Note that any multicategory can be restricted to a category by considering only

the unary maps. We can also define for f : Xq,...,X;, =Y, g: Wq,.. ., W,, = X
the single-index composite f o; g by
f o (1, ceny 1,g, 1, ceny 1) : Xl, ceey Xj—h Wl7 ey Wm, Xj+1, ceny Xn —Y.
1.1. Strong relative monads. We seek to generalise Kock’s notion of a strong
monad on a monoidal category. A strong monad structure on a monoidal category
is given by a map
txy : XQTY - T(X®Y)
satisfying some axioms. To define a suitable notion of strong RM in the multicat-
egorical setting, we extend an RM’s extension maps C(JX,TY) i> C(TX,TY)
to general n-ary hom-categories
_yi
CBi, s X, o, B TY) 25 C(By, .., TX, ..., Bu; TY),

which we call strengthenings. To use this to construct the map t in the ordinary
and representable case, we begin with the unit

1: XY ->T(XQY).
Passing to the underlying multicategory, this corresponds to a map
1: X,)Y 5> T(X®Y).
We can strengthen this map in the second argument to obtain
i X, TY - T(X®Y).

Now passing back to the original monoidal category we have found a strength map

XQ®TY - T(X ®Y), and one can check that this satisfies the strength axioms.

This derivation justifies the use of the terminology ‘strength’ to refer to the maps
C(Bi,.., JX, .. B TY) 25 C(By, .., TX, ..., Bi; TY)

below.

Definition 1.2. A strong RM (T,4,!) along a map of multicategories J : D — C
comprises
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e for each A € obC an object TA and map i4 : JA — T A, and
o for each arity n, 1 <j <mnand f: A1,..,4;1,JX, Aj11,..., 4, = TY a
map f7: Ay, ...,TX,...,A, — TY, where (—)7 is natural in all arguments,
such that we have

f = fj Oj ia
(ffojgy ™t =flo; g,
it=1

forall g: Ay, JX, ., Ay — TY, f: By, JY, ..., Bn — TC.

We see that a strong RM restricts to an RM along the map between the categories
of unary maps J : D — C. Thus, on unary maps, T" has a functor structure given
by Tf := (io f)L.

For the next result, consider maps of the form JX;,...,JX,, — TY, i.e. maps
which can be strengthened in any index. In this case we can extend our notation
from strengthenings in only one argument f — f7 to strengthenings in any subset
of the domain f ~ f* for S C [n]. Here we introduce the notation —og g; to mean
‘compose with the map g; at index j for all j € S’

Proposition 1.3. Let T be a strong RM. Then for each n, subset S C [n] and
JX1,....JX, = TY we have a map % :Xy,.... X, = TY, where

L )TX; jes
TUIX; ¢S
such that (—)° is natural in all arguments, and such that we have
f=1%0s1,

(f5 0 g)%2 471 = 510, g%,

forallg: JXy,..,JXy, = TY;, f:JIY1,...,JY, = TZ when j € S;.

Proof. The action (—)° is defined by applying the strengths (—)7 for j € S from
left to right. We must now prove the two equalities. To show that f = f% og 1, we
apply the equality f7 o;i = f in turn for each of the elements of S. To show that
(f51 05 )52t = 510, g% let S; = U U U’ where U = S; N [j]. Then
(f51 0j g)Sz+j*1 _ (fU 0j g)(Serjfl)u(UHmel)
_ (fU o gSg)(U/—i-m—l)

= 510, g%
O
Definition 1.4. A multifunctor F': D — C between multicategories comprises for
each hom-category D(A41, ..., A,; B) a function
D(Ay,...,An; B) - C(FAy,....,FA,;FB) : f— Ff,
such that the following two equalities hold:

[ ] F1A21FA,aIld
e F'(fojg)=Ffo;Fyg.
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Every multifunctor restricts to an ordinary functor between the categories of
unary maps in D and those in C.

Proposition 1.5. Let T be a strong RM along a multifunctor J : D — C. Then T
is a multifunctor.

Proof. We can define the action of T' on morphisms by (i o J 7)[”]. To show that
T1a = 174, we have

Tla = (ign0Jla)t = (ia0la)! =i} = 1pa.

To show that T'(f o; g) = T'f o; T'g, we have

T(foj9) = (ioJ(fo; g™ = (ioJfo; Jg)lrtmT]
(ioJf)i o, Jg)(ntm=1)
(io Jf)[j] 0; (io Jg))jm(ner—l)
(io Jf)m 0; (io Jg)[m])(j+m—1)...(n+m_1)
= (io Jf)[n] oj(io Jg)[m]
= Tf Oj Tg

= (
= (
= (

Hence a strong RM is a multifunctor. O

1.2. Idempotent strong relative monads.

Definition 1.6. Let T be a strong RM. We say T is idempotent if the strengthen-
ings are inverse to precomposition with the unit: the maps
(=)
—_—
Cl..., JX,.;TY) c(...TX,..;TY)

D
are inverses for all n and all objects Ay,..., X, ..., A,;Y. That is, as well as the
equality f7 o;i = f (which holds for all strong RMs), we also have (g o; i)7 = g.

1.3. Commutative relative monads. When we defined the subset strengths
(—)° we had to choose an order in which to apply the individual strengths. Com-
mutativity says that any choice of order gives the same result.

Definition 1.7. Let T be a strong RM. We say T is a commutative RM if for all
fiA, . JX, L JY, . A, > TZ and 1 < j < k <n we have

=ik TX, ..\ TY,.. > TZ.

Note that being able to commute any two strengths lets us reorder the application
of n strengths in any way we choose. This lets us manipulate the subset strengths
more freely, as the following proposition shows.

Proposition 1.8. Let T be a commutative RM, let f : JX1,....,J X, = TY be a
map, let S C [n], let g; : JZj1,...; JZjm; — TX; for j € S, and let S; C [my].
Then we have

(fS o5 g;)V 5 tk) = £S5 og g}qj,

where the k; are the required index shifts so that the strengths line up.
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Proof. Since T is commutative, we can rearrange the indices of S so that any of
them is rightmost. Thus if we start from (f* og gj)U(SJ'*’“J'), for each j € S in turn,
we can

e shuffle S so that j is rightmost, then
e apply the axioms of a strength to bring the indices of S; inside the paren-
theses.

Having done this for each j € S, we obtain f° og gfj as required. O

Having defined idempotent strong RM and commutative RMs, we now prove the
implication between them.

Theorem 1.9. If T is an idempotent strong RM, then T is commutative.

Proof. Suppose T is idempotent and let f: Ay,...,JX,....JY, ..., A, —» TZ. Then
74 = (7 0y i) = (7% oy i) = fi,

and so T is commutative. O

1.4. Multi relative monads.

Definition 1.10. Let 7" be an RM. We say T is a multi-RM if

e T is a multifunctor, and
e the multifunctoriality of T" is compatible with the monad structure,

which is to say that we have
e ioJf=Tfol(i..i) forany f: X;,....X,, = Y, and
e whenever hoJf =T f o(g1,...,gn) we also have h*oTf =T f o (g7, ..., g5):

TXy,..,TX, —2=% X! . TX!

Tfl J{Tf’
TY TY’

e
We further say that T is a symmetric multi-RM if we have (T'f), = T(f,) for all
n-ary f and o € S,,.

Theorem 1.11. Let T be a commutative RM along a symmetric multifunctor J :
D — C. Then T is a symmetric multi-RM.

Proof. Suppose T is commutative. Since T is strong, T is a multifunctor. We have
two conditions to check to show T is a multi-RM. For the first, we simply have

ioJf=(oJf)"o(i,..,i)=Tfo(i..i).

Note that this holds for any strong RM, not necessarily commutative. For the
second condition, suppose ho Jf =T f" o (g1,...,9,). Then

W oTf=h*o(ioJf) = (h*oioJf)l
= (ho J)") = (Tf' o (g1, ... gu))™

(o fH)M o (g1, gn))™

= (o Jf)" o (gf, ... 97)

=Tf" o(g7, - 0n)

|[—+



6 A. SLATTERY

where the step marked t holds by Proposition 1.8 and the commutativity of 7. To
show that T is furthermore symmetric, we have

(Tf)o- = ((Z o Jf)[n})a — ((Z o Jf)a)o(l)...a(n)
= (10 TN = (G0 I)1
=T(fs)

Hence indeed T is a symmetric multimonad. O

1.5. Commutative monoids in C.

Definition 1.12. Let C be a symmetric multicategory. The category CMon(C) of
commutative monoids in C comprises
e commutative monoid objects (M, m) consisting of an object M € C and
n-ary maps

My M,y M — M

for each n, such that
— My O Mp = My yp— forall 1 <k <n, and
— (mp)e =my, forall o € 5,,.
e monoid morphisms f : (M, m) — (M’,m') comprising a map f: M — M’
such that

M, ..M """ M

f,..i,fJ/ Jf

M. M —— M
mn

commutes for all n.
We have a forgetful functor U : CMon(C) — C with U(M,m) =M and Uf = f.

Proposition 1.13. If J : D — C is a symmetric multifunctor between symmetric
multicategories, then J lifts to a functor J : CMon(D) — CMon(C).

Proof. The map J sends an object (M,m) to (JM,Jm); we see that this is a
commutative monoid object since

Jmy, o Jmy, = J(my, o my) = JMptp—1

(Jmn)o = J(My)e = Jmy,

by the symmetric multifunctoriality of J. On morphisms we have Jf = Jf; we
need to check that if f: (M, m) — (M',m’) is a monoid morphism, then so is Jf.
Indeed, we have

Jml o (Jf, .., Jf)=J(ml o (f,...n f))=J(fomy,)=JfoJmy,

as required. Functoriality follows from the functor structure of J. So indeed if J is
a symmetric multifunctor then it lifts to J : CMon(D) — CMon(C). O

Theorem 1.14. Let (T,i,*) be a symmetric multi-RM along the symmetric mul-
tifunctor J : D — C. Then T lifts to a monad (T,i,*) along J : CMon(D) —
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CMon(C) such that

UT =TU,
U(i) =1,
Ui =r-

Proof. Suppose T is a symmetric multimonad along J : D — C. Let T(M,m) =
(T'M,Tm); this is a commutative monoid object due to the symmetric multifunctor
structure on 7', as above in Proposition 1.13.

The map i : JM — TM lifts to a monoid morphism i : (JM, Jm) — (T M, Tm)
because the diagram

JM, .., JM =" g

commutes for all n, being one of the axioms of a multimonad.
Given a monoid morphism f : (JM, Jm) — (TM’,Tm’) we have that

Jmy,

JM, .., JM 2y JM

Fo fl lf

commutes for all n. Since T is a multimonad, we therefore also have that

Tmy

TM™,..,TM - TAM

ffl lf*

TM',...TM ——» TM’

commutes for all n, and so f* is also a monoid morphism. Hence T" indeed lifts to
the required monad (7,4, *) on CMon(C). O
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