RELATIVE MONADS ON SYMMETRIC MULTICATEGORIES

ANDREW SLATTERY

Definition 0.1. A relative monad $\left(T, i,{ }^{*}\right)$ along a functor $J: \mathbb{D} \rightarrow \mathbb{C}$ comprises

- for each $A \in \operatorname{ob} \mathbb{C}$ an object $T A$ and map $i_{A}: J A \rightarrow T A$, and
- for each $f: J A \rightarrow T B$ a map $f^{*}: T A \rightarrow T B$
such that we have

$$
\begin{aligned}
f & =f^{*} i \\
\left(f^{*} g\right)^{*} & =f^{*} g^{*} \\
i^{*} & =1
\end{aligned}
$$

for all $g: J A \rightarrow T B, f: J B \rightarrow T C$.
T has the structure of a functor from \mathbb{D} to \mathbb{C}, with action on maps given by $T f:=(i f)^{*}$. Indeed, a relative monad along the identity $1_{\mathbb{C}}$ is equivalent to an ordinary monad, with multiplication $m_{X}: T T X \rightarrow T X$ defined by

$$
m_{X}:=\left(1_{T X}\right)^{*}
$$

In what follows we abbreviate 'relative monad' to 'RM'.

1. Strength

In this section, we define a notion of RM suitable for the multicategorical setting. This notion of strong $R M$ recovers the usual notion of strong monad on a monoidal category when the multicategory is representable and the RM is along the identity. We go on to derive, when T is a strong RM, the following chain of implications:
T is an idempotent strong RM
\downarrow
T is a commutative RM
\downarrow
T is a symmetric multi-RM
\downarrow
T lifts to an RM along $\operatorname{CMon}(\mathbb{C}) \rightarrow \operatorname{CMon}(\mathbb{C})$.
Definition 1.1. A multicategory \mathbb{C} comprises

- a class of objects ob \mathbb{C},
- for all n and objects X_{1}, \ldots, X_{n}, Y a class of n-ary maps $\mathbb{C}\left(X_{1}, \ldots, X_{n} ; Y\right)$; an element of which is denoted by $f: X_{1}, \ldots, X_{n} \rightarrow Y$,

[^0]- for each object A an identity map $1_{A} \in \mathbb{C}(A ; A)$,
- composition

$$
\begin{aligned}
\mathbb{C}\left(X_{1}, \ldots, X_{n} ; Y\right) \times \mathbb{C}\left(W_{1,1}, \ldots,\right. & \left.W_{1, m_{1}} ; X_{1}\right) \times \ldots \times \mathbb{C}\left(W_{n, 1}, \ldots, W_{n, m_{n}} ; X_{n}\right) \\
& \rightarrow \mathbb{C}\left(W_{1,1}, \ldots, W_{n, m_{n}} ; Y\right) \\
\left(f, g_{1}, \ldots, g_{n}\right) & \mapsto f \circ\left(g_{1}, \ldots, g_{n}\right)
\end{aligned}
$$

for all arities n, m_{1}, \ldots, m_{n} and all objects $Y, X_{1}, \ldots, X_{n}, W_{1,1}, \ldots, W_{n, m_{n}}$ in \mathbb{C},
where the identities and composition satisfy associativity and identity axioms.
We furthermore call \mathbb{C} a symmetric multicategory if for all n we have actions of the symmetric group S_{n} on the class of n-ary maps

$$
\begin{aligned}
(-)_{\sigma}: \mathbb{C}\left(X_{1}, \ldots, X_{n} ; Y\right) & \rightarrow \mathbb{C}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)} ; Y\right) \\
f & \mapsto f_{\sigma}
\end{aligned}
$$

compatible with the composition.
Note that any multicategory can be restricted to a category by considering only the unary maps. We can also define for $f: X_{1}, \ldots, X_{n} \rightarrow Y, g: W_{1}, \ldots, W_{m} \rightarrow X_{j}$ the single-index composite $f \circ_{j} g$ by

$$
f \circ(1, \ldots, 1, g, 1, \ldots, 1): X_{1}, \ldots, X_{j-1}, W_{1}, \ldots, W_{m}, X_{j+1}, \ldots, X_{n} \rightarrow Y
$$

1.1. Strong relative monads. We seek to generalise Kock's notion of a strong monad on a monoidal category. A strong monad structure on a monoidal category is given by a map

$$
t_{X, Y}: X \otimes T Y \rightarrow T(X \otimes Y)
$$

satisfying some axioms. To define a suitable notion of strong RM in the multicategorical setting, we extend an RM's extension maps $\mathbb{C}(J X, T Y) \xrightarrow{(-)^{*}} \mathbb{C}(T X, T Y)$ to general n-ary hom-categories

$$
\mathbb{C}\left(B_{1}, \ldots, X, \ldots, B_{n} ; T Y\right) \xrightarrow{(-)^{j}} \mathbb{C}\left(B_{1}, \ldots, T X, \ldots, B_{n} ; T Y\right)
$$

which we call strengthenings. To use this to construct the map t in the ordinary and representable case, we begin with the unit

$$
i: X \otimes Y \rightarrow T(X \otimes Y)
$$

Passing to the underlying multicategory, this corresponds to a map

$$
i: X, Y \rightarrow T(X \otimes Y)
$$

We can strengthen this map in the second argument to obtain

$$
i^{2}: X, T Y \rightarrow T(X \otimes Y)
$$

Now passing back to the original monoidal category we have found a strength map $X \otimes T Y \rightarrow T(X \otimes Y)$, and one can check that this satisfies the strength axioms. This derivation justifies the use of the terminology 'strength' to refer to the maps

$$
\mathbb{C}\left(B_{1}, \ldots, J X, \ldots, B_{n} ; T Y\right) \xrightarrow{(-)^{j}} \mathbb{C}\left(B_{1}, \ldots, T X, \ldots, B_{n} ; T Y\right)
$$

below.
Definition 1.2. A strong $R M\left(T, i,{ }^{t}\right)$ along a map of multicategories $J: \mathbb{D} \rightarrow \mathbb{C}$ comprises

- for each $A \in$ ob \mathbb{C} an object $T A$ and map $i_{A}: J A \rightarrow T A$, and
- for each arity $n, 1 \leq j \leq n$ and $f: A_{1}, \ldots, A_{j-1}, J X, A_{j+1}, \ldots, A_{n} \rightarrow T Y$ a $\operatorname{map} f^{j}: A_{1}, \ldots, T X, \ldots, A_{n} \rightarrow T Y$, where $(-)^{j}$ is natural in all arguments, such that we have

$$
\begin{aligned}
f & =f^{j} \circ_{j} i, \\
\left(f^{j} \circ_{j} g\right)^{j+k-1} & =f^{j} \circ_{j} g^{k}, \\
i^{1} & =1
\end{aligned}
$$

for all $g: A_{1}, \ldots, J X, \ldots, A_{m} \rightarrow T Y, f: B_{1}, \ldots, J Y, \ldots, B_{n} \rightarrow T C$.
We see that a strong RM restricts to an RM along the map between the categories of unary maps $J: \mathbb{D} \rightarrow \mathbb{C}$. Thus, on unary maps, T has a functor structure given by $T f:=(i \circ f)^{1}$.

For the next result, consider maps of the form $J X_{1}, \ldots, J X_{n} \rightarrow T Y$, i.e. maps which can be strengthened in any index. In this case we can extend our notation from strengthenings in only one argument $f \mapsto f^{j}$ to strengthenings in any subset of the domain $f \mapsto f^{S}$ for $S \subseteq[n]$. Here we introduce the notation - $o_{S} g_{j}$ to mean 'compose with the map g_{j} at index j for all $j \in S$ '.

Proposition 1.3. Let T be a strong $R M$. Then for each n, subset $S \subseteq[n]$ and $J X_{1}, \ldots, J X_{n} \rightarrow T Y$ we have a map $f^{S}: X_{1}, \ldots, X_{n} \rightarrow T Y$, where

$$
X_{j}= \begin{cases}T X_{j} & j \in S \\ J X_{j} & j \notin S\end{cases}
$$

such that $(-)^{S}$ is natural in all arguments, and such that we have

$$
\begin{aligned}
f & =f^{S} \circ_{S} i \\
\left(f^{S_{1}} \circ_{j} g\right)^{S_{2}+j-1} & =f^{S_{1}} \circ_{j} g^{S_{2}}
\end{aligned}
$$

for all $g: J X_{1}, \ldots, J X_{m} \rightarrow T Y_{j}, f: J Y_{1}, \ldots, J Y_{n} \rightarrow T Z$ when $j \in S_{1}$.
Proof. The action $(-)^{S}$ is defined by applying the strengths $(-)^{j}$ for $j \in S$ from left to right. We must now prove the two equalities. To show that $f=f^{S} \circ_{S} i$, we apply the equality $f^{j} \circ_{j} i=f$ in turn for each of the elements of S. To show that $\left(f^{S_{1}} \circ_{j} g\right)^{S_{2}+j-1}=f^{S_{1}} \circ_{j} g^{S_{2}}$, let $S_{1}=U \sqcup U^{\prime}$ where $U=S_{1} \cap[j]$. Then

$$
\begin{aligned}
\left(f^{S_{1}} \circ_{j} g\right)^{S_{2}+j-1} & =\left(f^{U} \circ_{j} g\right)^{\left(S_{2}+j-1\right) \sqcup\left(U^{\prime}+m-1\right)} \\
& =\left(f^{U} \circ_{j} g^{S_{2}}\right)^{\left(U^{\prime}+m-1\right)} \\
& =f^{S_{1}} \circ_{j} g^{S_{2}}
\end{aligned}
$$

Definition 1.4. A multifunctor $F: \mathbb{D} \rightarrow \mathbb{C}$ between multicategories comprises for each hom-category $\mathbb{D}\left(A_{1}, \ldots, A_{n} ; B\right)$ a function

$$
\mathbb{D}\left(A_{1}, \ldots, A_{n} ; B\right) \rightarrow \mathbb{C}\left(F A_{1}, \ldots, F A_{n} ; F B\right): f \mapsto F f
$$

such that the following two equalities hold:

- $F 1_{A}=1_{F A}$, and
- $F\left(f \circ_{j} g\right)=F f \circ_{j} F g$.

Every multifunctor restricts to an ordinary functor between the categories of unary maps in \mathbb{D} and those in \mathbb{C}.

Proposition 1.5. Let T be a strong $R M$ along a multifunctor $J: \mathbb{D} \rightarrow \mathbb{C}$. Then T is a multifunctor.
Proof. We can define the action of T on morphisms by $(i \circ J-)^{[n]}$. To show that $T 1_{A}=1_{T A}$, we have

$$
T 1_{A}:=\left(i_{A} \circ J 1_{A}\right)^{1}=\left(i_{A} \circ 1_{J A}\right)^{1}=i_{A}^{1}=1_{T A} .
$$

To show that $T\left(f \circ_{j} g\right)=T f \circ_{j} T g$, we have

$$
\begin{aligned}
T\left(f \circ_{j} g\right) & :=\left(i \circ J\left(f \circ_{j} g\right)\right)^{[n+m-1]}=\left(i \circ J f \circ_{j} J g\right)^{[n+m-1]} \\
& =\left((i \circ J f)^{[j-1]} \circ_{j} J g\right)^{j \ldots(n+m-1)} \\
& =\left((i \circ J f)^{[j]} \circ_{j}(i \circ J g)\right)^{j \ldots(n+m-1)} \\
& =\left((i \circ J f)^{[j]} \circ_{j}(i \circ J g)^{[m]}\right)^{(j+m-1) \ldots(n+m-1)} \\
& =(i \circ J f)^{[n]} \circ_{j}(i \circ J g)^{[m]} \\
& =T f \circ_{j} T g
\end{aligned}
$$

Hence a strong RM is a multifunctor.

1.2. Idempotent strong relative monads.

Definition 1.6. Let T be a strong RM. We say T is idempotent if the strengthenings are inverse to precomposition with the unit: the maps

are inverses for all n and all objects $A_{1}, \ldots, X, \ldots, A_{n} ; Y$. That is, as well as the equality $f^{j} \circ_{j} i=f$ (which holds for all strong RMs), we also have $\left(g \circ_{j} i\right)^{j}=g$.
1.3. Commutative relative monads. When we defined the subset strengths $(-)^{S}$ we had to choose an order in which to apply the individual strengths. Commutativity says that any choice of order gives the same result.

Definition 1.7. Let T be a strong RM. We say T is a commutative $R M$ if for all $f: A_{1}, \ldots, J X, \ldots, J Y, \ldots, A_{n} \rightarrow T Z$ and $1 \leq j<k \leq n$ we have

$$
f^{k j}=f^{j k}: \ldots, T X, \ldots, T Y, \ldots \rightarrow T Z
$$

Note that being able to commute any two strengths lets us reorder the application of n strengths in any way we choose. This lets us manipulate the subset strengths more freely, as the following proposition shows.

Proposition 1.8. Let T be a commutative $R M$, let $f: J X_{1}, \ldots, J X_{n} \rightarrow T Y$ be a map, let $S \subseteq[n]$, let $g_{j}: J Z_{j 1}, \ldots, J Z_{j m_{j}} \rightarrow T X_{j}$ for $j \in S$, and let $S_{j} \subseteq\left[m_{j}\right]$. Then we have

$$
\left(f^{S} \circ_{S} g_{j}\right)^{\cup\left(S_{j}+k_{j}\right)}=f^{S} \circ_{S} g_{j}^{S_{j}},
$$

where the k_{j} are the required index shifts so that the strengths line up.

Proof. Since T is commutative, we can rearrange the indices of S so that any of them is rightmost. Thus if we start from $\left(f^{S} \circ_{S} g_{j}\right) \cup\left(S_{j}+k_{j}\right)$, for each $j \in S$ in turn, we can

- shuffle S so that j is rightmost, then
- apply the axioms of a strength to bring the indices of S_{j} inside the parentheses.
Having done this for each $j \in S$, we obtain $f^{S} \circ_{S} g_{j}^{S_{j}}$ as required.
Having defined idempotent strong RM and commutative RMs, we now prove the implication between them.

Theorem 1.9. If T is an idempotent strong $R M$, then T is commutative.
Proof. Suppose T is idempotent and let $f: A_{1}, \ldots, J X, \ldots, J Y, \ldots, A_{n} \rightarrow T Z$. Then

$$
f^{k j}=\left(f^{j} \circ_{j} i\right)^{k j}=\left(f^{j k} \circ_{j} i\right)^{j}=f^{j k}
$$

and so T is commutative.

1.4. Multi relative monads.

Definition 1.10. Let T be an RM. We say T is a multi- $R M$ if

- T is a multifunctor, and
- the multifunctoriality of T is compatible with the monad structure, which is to say that we have
- $i \circ J f=T f \circ(i, \ldots, i)$ for any $f: X_{1}, \ldots, X_{n} \rightarrow Y$, and
- whenever $h \circ J f=T f^{\prime} \circ\left(g_{1}, \ldots, g_{n}\right)$ we also have $h^{*} \circ T f=T f^{\prime} \circ\left(g_{1}^{*}, \ldots, g_{n}^{*}\right)$:

We further say that T is a symmetric multi- $R M$ if we have $(T f)_{\sigma}=T\left(f_{\sigma}\right)$ for all n-ary f and $\sigma \in S_{n}$.
Theorem 1.11. Let T be a commutative RM along a symmetric multifunctor J : $\mathbb{D} \rightarrow \mathbb{C}$. Then T is a symmetric multi-RM.

Proof. Suppose T is commutative. Since T is strong, T is a multifunctor. We have two conditions to check to show T is a multi-RM. For the first, we simply have

$$
i \circ J f=(i \circ J f)^{[n]} \circ(i, \ldots, i)=T f \circ(i, \ldots, i)
$$

Note that this holds for any strong RM, not necessarily commutative. For the second condition, suppose $h \circ J f=T f^{\prime} \circ\left(g_{1}, \ldots, g_{n}\right)$. Then

$$
\begin{aligned}
h^{*} \circ T f & =h^{*} \circ(i \circ J f)^{[n]}=\left(h^{*} \circ i \circ J f\right)^{[n]} \\
& =(h \circ J f)^{[n]}=\left(T f^{\prime} \circ\left(g_{1}, \ldots, g_{n}\right)\right)^{[n]} \\
& =\left(\left(i \circ f^{\prime}\right)^{[n]} \circ\left(g_{1}, \ldots, g_{n}\right)\right)^{[n]} \\
& \stackrel{\dagger}{=}\left(i \circ J f^{\prime}\right)^{[n]} \circ\left(g_{1}^{*}, \ldots, g_{n}^{*}\right) \\
& =T f^{\prime} \circ\left(g_{1}^{*}, \ldots, g_{n}^{*}\right),
\end{aligned}
$$

where the step marked \dagger holds by Proposition 1.8 and the commutativity of T. To show that T is furthermore symmetric, we have

$$
\begin{aligned}
(T f)_{\sigma} & :=\left((i \circ J f)^{[n]}\right)_{\sigma}=\left((i \circ J f)_{\sigma}\right)^{\sigma(1) \ldots \sigma(n)} \\
& =\left((i \circ J f)_{\sigma}\right)^{[n]}=\left(i \circ J f_{\sigma}\right)^{[n]} \\
& =T\left(f_{\sigma}\right)
\end{aligned}
$$

Hence indeed T is a symmetric multimonad.

1.5. Commutative monoids in \mathbb{C}.

Definition 1.12. Let C be a symmetric multicategory. The category CMon (\mathbb{C}) of commutative monoids in \mathbb{C} comprises

- commutative monoid objects (M, m) consisting of an object $M \in \mathbb{C}$ and n-ary maps

$$
m_{n}: M, \ldots, M \rightarrow M
$$

for each n, such that

- $m_{n} \circ_{k} m_{p}=m_{n+p-1}$ for all $1 \leq k \leq n$, and
- $\left(m_{n}\right)_{\sigma}=m_{n}$ for all $\sigma \in S_{n}$.
- monoid morphisms $f:(M, m) \rightarrow\left(M^{\prime}, m^{\prime}\right)$ comprising a map $f: M \rightarrow M^{\prime}$ such that

commutes for all n.
We have a forgetful functor $U: \operatorname{CMon}(\mathbb{C}) \rightarrow \mathbb{C}$ with $U(M, m)=M$ and $U f=f$.
Proposition 1.13. If $J: \mathbb{D} \rightarrow \mathbb{C}$ is a symmetric multifunctor between symmetric multicategories, then J lifts to a functor $\tilde{J}: \operatorname{CMon}(\mathbb{D}) \rightarrow \operatorname{CMon}(\mathbb{C})$.

Proof. The map \tilde{J} sends an object (M, m) to $(J M, J m)$; we see that this is a commutative monoid object since

$$
\begin{aligned}
J m_{n} \circ_{k} J m_{p} & =J\left(m_{n} \circ_{k} m_{p}\right)=J m_{n+p-1} \\
\left(J m_{n}\right)_{\sigma} & =J\left(m_{n}\right)_{\sigma}=J m_{n}
\end{aligned}
$$

by the symmetric multifunctoriality of J. On morphisms we have $\tilde{J} f=J f$; we need to check that if $f:(M, m) \rightarrow\left(M^{\prime}, m^{\prime}\right)$ is a monoid morphism, then so is $J f$. Indeed, we have

$$
J m_{n}^{\prime} \circ(J f, \ldots, J f)=J\left(m_{n}^{\prime} \circ(f, \ldots, f)\right)=J\left(f \circ m_{n}\right)=J f \circ J m_{n}
$$

as required. Functoriality follows from the functor structure of J. So indeed if J is a symmetric multifunctor then it lifts to $\tilde{J}: \operatorname{CMon}(\mathbb{D}) \rightarrow \operatorname{CMon}(\mathbb{C})$.

Theorem 1.14. Let $\left(T, i,{ }^{*}\right)$ be a symmetric multi-RM along the symmetric multifunctor $J: \mathbb{D} \rightarrow \mathbb{C}$. Then T lifts to a monad $\left(\tilde{T}, i,{ }^{*}\right)$ along $\tilde{J}: \operatorname{CMon}(\mathbb{D}) \rightarrow$
$\operatorname{CMon}(\mathbb{C})$ such that

$$
\begin{aligned}
U \tilde{T} & =T U \\
U(i) & =i \\
U\left(f^{*}\right) & =f^{*}
\end{aligned}
$$

Proof. Suppose T is a symmetric multimonad along $J: \mathbb{D} \rightarrow \mathbb{C}$. Let $\tilde{T}(M, m)=$ $(T M, T m)$; this is a commutative monoid object due to the symmetric multifunctor structure on T, as above in Proposition 1.13.

The map $i: J M \rightarrow T M$ lifts to a monoid morphism $i:(J M, J m) \rightarrow(T M, T m)$ because the diagram

commutes for all n, being one of the axioms of a multimonad.
Given a monoid morphism $f:(J M, J m) \rightarrow\left(T M^{\prime}, T m^{\prime}\right)$ we have that

commutes for all n. Since T is a multimonad, we therefore also have that

commutes for all n, and so f^{*} is also a monoid morphism. Hence T indeed lifts to the required monad $\left(\tilde{T}, i,{ }^{*}\right)$ on $\operatorname{CMon}(\mathbb{C})$.

[^0]: Date: September 12, 2023.

