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Extension systems

Definition

(Extension systems, Marmolejo + Wood 2010) An extension system (T , i , ∗)
on a category C comprises

for each object A in C, an object TA in C and unit map iA ∶ A→ TA,

for every map f ∶ A→ TB an extension f ∗ ∶ TA→ TB, satisfying the
following three equations for all f ∶ A→ TB, g ∶ Z → TA:

f = f ∗iA,

(f ∗g)∗ = f ∗g∗,

iA∗ = 1TA.
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Extension systems

Extension systems and monads are equivalent, in that each structure induces
the other. However, the definition of extension system does not reference
iteration of the action of T , and so it can be more easily generalised to the
notion of a monad along some base functor J ∶ D→ C.

Definition

(Relative monad, Altenkirch et al. 2014) A relative monad (T , i , ∗) along a
functor J ∶ D→ C comprises

for each object A in D, an object TA in C and unit map iA ∶ JA→ TA,

for every map f ∶ JA→ TB an extension f ∗ ∶ TA→ TB, satisfying the
following three equations for all f ∶ JA→ TB, g ∶ JZ → TA:

f = f ∗iA,

(f ∗g)∗ = f ∗g∗,

iA∗ = 1TA.
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Relative pseudomonads

We can categorify this definition, considering now 2-categories C and D.

Definition

(Relative pseudomonad, Fiore et al. 2018) A relative pseudomonad
(T , i , ∗;η,µ, θ) along a 2-functor J ∶ D→ C comprises

for each object A in D, an object TA in C and unit map iA ∶ JA→ TA,

for every A,B an extension functor between hom-categories

C(JA,TB)
(−)

∗
ÐÐ→ C(TA,TB),

along with three invertible families of 2-cells:

ηf ∶ f → f ∗iA for f ∶ JA→ TB,

µf ,g ∶ (f
∗g)∗ → f ∗g∗ for f ∶ JA→ TB, g ∶ JZ → TA, and

θA ∶ i
∗

A → 1TA for A in D.
satisfying two coherence diagrams.
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Example: The presheaf relative pseudomonad

The presheaf construction X ↦ PshX cannot be given the structure of a
pseudomonad, since it is not an endofunctor (due to size issues). However, it
can be given the structure of a relative pseudomonad along the inclusion
J ∶ Cat→ CAT as follows:

the unit iX ∶ X → PshX is given by the Yoneda embedding,

the extension of a functor f ∶ X → PshY is given by the left Kan extension
of f along the Yoneda embedding

X PshX

PshY

y

f ∗ ∶=Lany f
f

ηf

which also defines the 2-cells ηf ∶ f → f ∗i .

the 2-cells µf ,g and θX are defined by the universal property of the left
Kan extension.



Outline Background Parameterisation Pseudocommutativity Lax idempotency

Example: The presheaf relative pseudomonad

The presheaf construction X ↦ PshX cannot be given the structure of a
pseudomonad, since it is not an endofunctor (due to size issues). However, it
can be given the structure of a relative pseudomonad along the inclusion
J ∶ Cat→ CAT as follows:

the unit iX ∶ X → PshX is given by the Yoneda embedding,

the extension of a functor f ∶ X → PshY is given by the left Kan extension
of f along the Yoneda embedding

X PshX

PshY

y

f ∗ ∶=Lany f
f

ηf

which also defines the 2-cells ηf ∶ f → f ∗i .

the 2-cells µf ,g and θX are defined by the universal property of the left
Kan extension.



Outline Background Parameterisation Pseudocommutativity Lax idempotency

Strong monads and commutative monads

We briefly summarise the classical work of Anders Kock (1970) on monads on
monoidal categories, which we wish to extend to relative pseudomonads on
2-multicategories.

Every strong monad, being equipped with families of maps
tA,B ∶ A⊗TB → T(A⊗B) and sA,B ∶ TA⊗B → T(A⊗B), is a lax
monoidal functor with either of the structure maps

ϕA,B ∶TA⊗TB
s
Ð→ T(A⊗TB)

Tt
Ð→ T 2

(A⊗B)
µ
Ð→ T(A⊗B)

ϕ′A,B ∶TA⊗TB
t
Ð→ T(TA⊗B)

Ts
Ð→ T 2

(A⊗B)
µ
Ð→ T(A⊗B).

If the monad is furthermore commutative (meaning the two composites
above are equal), then T is not only a monoidal functor but a monoidal
monad.
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Setting: 2-multicategories

Definition

(2-multicategory) A 2-multicategory C is a multicategory enriched in Cat.
Unwrapping this statement a little, a 2-multicategory C is given by

1 a collection of objects X ∈ obC, together with
2 a category of multimorphisms C(X1, ...,Xn;Y ) for all n ≥ 0 and objects

X1, ...,Xn,Y which we call a hom-category,

3 an identity multimorphism functor 1X ∶ 1→ C(X ;X) ∶ ∗↦ 1X for all
X ∈ obC, and

4 composition functors

C(X1, ...,Xn;Y ) × C(W1,1, ...,W1,m1
) × ... × C(Wn,1, ...,Wn,mn )→ C(W1,1, ...,Wn,mn ;Y )

(f , g1, ..., gn)↦ f ○ (g1, ..., gn)

for all arities n,m1, ...,mn and objects Y ,X1, ...,Xn,W1,1, ...,Wn,mn ∈ obC.
where the identity and composition functors satisfy the usual associativity and
identity axioms for an enrichment.
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Setting: 2-multicategories

We would like to relate 2-multicategories to perhaps more familiar structures.

Remark

Every 2-multicategory restricts to a 2-category by considering only the
unary hom-categories C(X ;Y ).

Monoidal 2-categories (so in particular Cat and CAT) have underlying
2-multicategories, where hom-categories C(X1, ...,Xn;Y ) are given by
C(X1 ⊗ ...⊗Xn,Y ) (choosing the leftmost bracketing of the tensor
product).

To define a suitable notion of relative pseudomonad in the 2-multicategorical
setting, we will extend a relative pseudomonad’s unary extension functors

C(JX ,TY )
(−)

∗
ÐÐ→ C(TX ,TY ) to general n-ary hom-categories.
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Parameterised relative pseudomonads

Definition

(Parameterised relative pseudomonad) Let C and D be 2-multicategories and
let J ∶ D→ C be a (unary) 2-functor between them. A parameterised relative
pseudomonad (T , i , t ; t̃, t̂, θ) along J comprises:

for every object X in D an object TX in C and unit map iX ∶ JX → TX ,

for every n, index 1 ≤ i ≤ n, objects B1, ...,Bi−1,Bi+1, ...,Bn in C and
objects X ,Y in D a functor

C(B1, ...,Bi−1, JX ,Bi+1, ...,Bn;TY )
(−)

ti

ÐÐÐ→ C(B1, ...,Bi−1,TX ,Bi+1, ...,Bn;TY )

called the strength (in the ith argument) and which is pseudonatural in
all arguments, along with three natural families of invertible 2-cells:

t̃f ∶ f → f tj ○j i ,

t̂f ,g ∶ (f
tj
○j g)

tj+k−1 → f tj ○j g
tk , and

θX ∶ (iX )
t1
→ 1TX for f ∶ B1, ..., JX , ...,Bn → TY and

g ∶ C1, ..., JW , ...,Cm → TX , satisfying two coherence diagrams.
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Parameterised relative pseudomonads

For notational convenience, when a map such as f ∶ B1, ..., JX , ...,Bn → TY has
only one explicitly possible strengthening index, we will denote this
strengthening simply as f t . We will furthermore use the notation f t ○t g to
denote the composition of f t with g in this strengthened argument. For
example, the families of invertible 2-cells above are written in this notation as:

t̃f ∶ f → f t ○t i

t̂f ,g ∶ (f
t
○t g)

t
→ f t ○t g

t

θ ∶ i t → 1

The data for a parameterised relative pseudomonad resembles that for a
(unary) relative pseudomonad very closely. Indeed, restricting C and D to their
2-categories of unary maps, (T , i , t) is exactly a (unary) relative pseudomonad,
with

(−)
∗

∶= (−)
t ,

η ∶= t̃,

µ ∶= t̂,

θ ∶= θ.
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Parameterised relative pseudomonads

The stipulation that the maps

C(B1, ..., JX , ...,Bn;TY )
(−)

tj

ÐÐ→ C(B1, ...,TX , ...,Bn;TY )

be pseudonatural in all arguments asks in particular for invertible 2-cells of the
form

(f ○k g)
tj
≅ f tj ○k g for g ∶ C1, ...,Cm → Bk (where k ≠ j).

Wherever such pseudonaturality isomorphisms arise in diagrams we will leave
them anonymous, as they can be inferred from the source and target.
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Special case: strong monads

A strong monad structure on a monoidal category is given by a map
tX ,Y ∶ X ⊗TY → T(X ⊗Y ) satisfying some axioms. To construct this map
using a parameterised pseudomonad structure, we begin with the unit

i ∶ X ⊗Y → T(X ⊗Y ).

Passing to the underlying multicategory, this corresponds to a map

i ∶ X ,Y → T(X ⊗Y ).

We can strengthen this map in the second argument to obtain

i t2 ∶ X ,TY → T(X ⊗Y ).

Now passing back to the original monoidal category we have found a strength
map X ⊗TY → T(X ⊗Y ), and one can check that this satisfies the strength
axioms. This derivation justifies the use of the terminology ‘strength’ to refer

to the functors C(B1, ..., JX , ...,Bn;TY )
(−)

ti

ÐÐ→ C(B1, ...,TX , ...,Bn;TY ).
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Multilinear pseudofunctors

Definition

(Multilinear pseudofunctor) Given 2-multicategories C,D, a multilinear
pseudofunctor F ∶ D→ C consists of:

a function obD F
Ð→ obC ∶ X ↦ FX ,

for each hom-category D(X1, ...,Xn;Y ) in D a functor

D(X1, ...,Xn;Y )→ C(FX1, ...,FXn;FY ) ∶ f ↦ Ff ,

along with

for each X ∈ obD an invertible 2-cell

F̃X ∶ F1X Ô⇒ 1FX ,

for each f ∶ X1, ...,Xn → Y , 1 ≤ i ≤ n and g ∶W1, ...,Wm → Xi an invertible
2-cell

F̂f ,g ∶ F(f ○i g) Ô⇒ Ff ○i Fg

satisfying three coherence conditions which parallel the unit and associativity
diagrams for a lax monoidal functor.
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Multilinear pseudofunctors

Just as every strong monad is lax monoidal as a functor, every parameterised
relative pseudomonad is multilinear as a pseudofunctor.

Proposition

Let T be a parameterised relative pseudomonad along multilinear 2-functor
J ∶ D→ C. Then T is a multilinear pseudofunctor T ∶ D→ C. The action of T
on multimorphisms is given by

Tf ∶= (iY ○ Jf )
t1t2...tn

∶= f̄ t1,...,tn

for a map f ∶ X1, ...,Xn → Y .
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Proof.

(modulo coherence) We need to construct invertible 2-cells T̃X ∶ T1X Ô⇒ 1TX
and T̂f ,g ∶ T(f ○i g) Ô⇒ Tf ○i Tg .
For the former, we can use the map

T1X = (iX ○ J1X )
t
= (iX )

t 1TX .
θX

For the latter, we employ the composite

T(f ○i g) = (i ○ Jf ○i Jg)
t1...tn+m−1

∼

Ð→ ((i ○ Jf )t1...ti−1 ○i Jg)
ti ...tn+m−1

t̃
Ð→ ((i ○ Jf )t1...ti ○i i ○ Jg)

ti ...tn+m−1

t̂...t̂
ÐÐ→ ((i ○ Jf )t1...ti ○i (i ○ Jg)

t1...tm
)
ti+m...tn+m−1

∼

Ð→ (i ○ Jf )t1...tn ○i (i ○ Jg)
t1...tm

= Tf ○i Tg .
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Pseudocommutativity

There is some freedom in the multilinear pseudofunctorial structure we place on
a given parameterised relative pseudomonad T ; we defined the action of T on
morphisms by

Tf ∶= (i ○ Jf )t1...tn ,

but we could equally well have chosen

Tf ∶= (i ○ Jf )tn...t1

with the strengthenings applied in the reverse order. This parallels the classical
situation described by Kock, where a strong monad with strength t and
costrength s can be given the structure of lax monoidal functor in two ways:

TX ⊗TY
t
Ð→ T(TX ⊗Y )

Ts
Ð→ TT(X ⊗Y )

µ
Ð→ T(X ⊗Y ),

TX ⊗TY
s
Ð→ T(X ⊗TY )

Tt
Ð→ TT(X ⊗Y )

µ
Ð→ T(X ⊗Y ).

It is then natural to ask about those strong monads for which these two
composites are equal, which Kock called commutative monads.
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Pseudocommutativity

Hyland and Power (2002) extend this notion to the two-dimensional
setting, defining pseudocommutativity by asking only for an invertible
2-cell between the two composites. I will generalise further to the relative
setting.

Let us extend our notation in the following way. When a map
f ∶ B1, ..., JX , ..., JY , ...,Bn → TZ has two explicitly possible
strengthenings, let strengthening in the leftmost of these two arguments
be denoted by f s with 2-cells s̃ ∶ f → f s ○s i and ŝ ∶ (f s ○s g)

s
→ f s ○ g t , and

let strengthening in the rightmost of these two arguments be denoted by
f t with 2-cells t̃, t̂. When f has three explicitly possible strengthening we
furthermore use f u, etc.
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Pseudocommutativity

Definition

(Pseudocommutative relative pseudomonad) Let T be a parameterised relative
pseudomonad. We call T pseudocommutative if for every pair of indices
1 ≤ j < k ≤ n and map

f ∶ B1, ...,Bi−1, JX ,Bi+1...,Bj−1, JY ,Bj+1, ...,Bn → TZ

we have an invertible 2-cell

γf ∶ f
ts
→ f st ∶ B1, ...,TX , ...,TY , ...,Bn → TZ

which is pseudonatural in all arguments and which satisfies five coherence
conditions (one each for s̃, t̃, ŝ and t̂, along with a braiding condition).



Outline Background Parameterisation Pseudocommutativity Lax idempotency

The braiding condition

The braiding condition relates the six ways to strengthen a map

f ∶ B1, ...JW , ..., JX , ..., JY , ...,Bn → TZ

in all three arguments, asking that the diagram

f uts f tus f tsu

f ust f sut f stu

(γf )
s γf t

(γf )
uγf u

(γf )
t γf s

commutes. Given a map f ∶ JX1, ..., JXn → TY and a permutation σ ∈ Sn, we
can construct maps

f t1...tn → f tσ(1)...tσ(n)

as a composite of γ maps and their inverses. The braiding axiom tells us that
any two such composites of γ and γ−1 maps are equal.
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Multilinear relative pseudomonads

Definition

Let C,D be 2-multicategories and let T be a relative pseudomonad along
J ∶ D→ C. We say T is a multilinear relative pseudomonad if

T is a multilinear pseudofunctor, and

The unit and extension of T are compatible with the pseudofunctor
structure.

Explicitly, we ask that

the monad unit i is multilinear: for each f ∶ X1, ...,Xn → Y we have an
invertible 2-cell

ı̄f ∶ iY ○ Jf → Tf ○ (iX1 , ..., iXn),

JX1, ..., JXn TX1, ...,TXn

JY TY

Jf Tf

i

i,...,i

ı̄f
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Multilinear relative pseudomonads

the monad extension (−)∗ is multilinear: for each 2-cell of the form
α ∶ h ○ Jf → Tf ′ ○ (g1, ...,gn):

JX1, ..., JXn TX ′1, ...,TX
′

n

JY TY ′

Jf Tf ′

h

g1,...,gn

α

we have a 2-cell α∗ ∶ h∗ ○Tf → Tf ′ ○ (g∗1 , ...,g
∗

n ) fitting into the square

TX1, ...,TXn TX ′1, ...,TX
′

n

TY TY ′

Tf Tf ′

h∗

g∗1 ,...,g∗n

α∗

and the ı̄f and the α∗ satisfy three coherence conditions (one for each of the
families of 2-cells making T a relative pseudomonad).
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Multilinear relative pseudomonads

We shall see in the following theorem that for every parameterised relative
pseudomonad, the monad unit is multilinear (we can define the invertible
2-cells ı̄f ), but in order to make the monad extension multilinear we require the
relative pseudomonad to be pseudocommutative. This parallels the classical
situation from Kock 1970, where the monad unit of a strong monad is always
monoidal, but the monad multiplication is only monoidal if the monad is
commutative.

Theorem

Let T be a parameterised relative pseudomonad along multilinear 2-functor
J ∶ D→ C. Suppose T is pseudocommutative. Then T is a multilinear relative
pseudomonad.
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Proof (modulo coherence)

By the previous proposition, since T is parameterised we know that T is a
multilinear pseudofunctor. We must check that the monad unit and extension
are compatible with the pseudofunctor structure. We construct ı̄f as the
composite

i ○ Jf
t̃
Ð→ (i ○ Jf )t1 ○ (i ,1, ...,1)

t̃
Ð→ (i ○ Jf )t1t2 ○ (i , i ,1, ...,1)

⋮

t̃
Ð→ (i ○ Jf )t1t2...tn ○ (i , i , i , ..., i) = Tf ○ (i , ..., i).

Note that we do not need the pseudocommutativity to construct the ı̄f 2-cells.
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Proof (cont.)

The construction of α∗ given α ∶ h ○ Jf → Tf ′ ○ (g1, ...,gn) is more involved. We
require a 2-cell of shape

h∗ ○Tf → Tf ′ ○ (g∗1 , ...,g
∗

n ).

We begin with the composite

h∗ ○Tf ∶= ht
○ (i ○ Jf )t1...tn

t̂−1
Ð→ (ht

○ (i ○ Jf )t1...tn−1)tn

t̂−1
Ð→ (ht

○ (i ○ Jf )t1...tn−2)tn−1tn

⋮

t̂−1
Ð→ (ht

○ i ○ Jf )t1...tn

t̃−1
Ð→ (h ○ Jf )t1...tn ,

at which point we can compose with αt1...tn to arrive at

(Tf ′ ○ (g1, ...,gn))
t1...tn

∶= ((i ○ Jf ′)t1....tn ○ (g1, ...,gn))
t1...tn .
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Proof (cont.)

From here we start needing the pseudocommutativity of T . Let σ ∈ Sn be the
cyclic permutation 1→ 2→ ...→ n → 1. Now we compose as follows:

((i ○ Jf ′)t1....tn ○ (g1, ...,gn))
t1...tn γσ

Ð→ ((i ○ Jf ′)t2....t1 ○ (g1, ...,gn))
t1...tn

t̂
Ð→ ((i ○ Jf ′)t2....t1 ○ (g t

1 ,g2, ...,gn))
t2...tn

γσ
Ð→ ((i ○ Jf ′)t3....t2 ○ (g t

1 ,g2, ...,gn))
t2...tn

t̂
Ð→ ((i ○ Jf ′)t3....t2 ○ (g t

1 ,g
t
2 ,g3, ...,gn))

t3...tn

⋮

γσ
Ð→ ((i ○ Jf ′)t1....tn ○ (g t

1 , ...,g
t
n−1,gt))

tn

t̂
Ð→ (i ○ Jf ′)t1....tn ○ (g t

1 , ..., ,g
t
n)

= Tf ′ ○ (g∗1 , ...,g
∗

n ).
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Proof.

For example, the full composite in the case where f is a binary map is given by
the diagram below:

ht
○ (i ○ Jf )st f ′st ○ (g t

1 ,g
t
2)

(f ′st ○ (g∗1 ,g2))
t

(ht
○ (i ○ Jf )s)t (f ′ts ○ (g∗1 ,g2))

t

(f ′ts ○ (g1,g2))
st

(ht
○ i ○ Jf )st (h ○ Jf )st (f ′st ○ (g1,g2))

st

t̂−1

ŝ−1

t̃−1 α

γ−1

ŝ

γ

t̂

α∗
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Summary

The previous sections have proved the following implications for T a relative
pseudomonad along J ∶ D→ C between 2-multicategories:

T parameterised Ô⇒ T multilinear pseudofunctor, and

T pseudocommutative Ô⇒ T multilinear pseudomonad.

Working directly with pseudocommutativity and multilinearity can be tedious.
In the coda we will examine a condition on a relative pseudomonad which both
implies pseudocommutativity and which is much easier to verify, being
characterised by a universal property.
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Lax idempotency

The lax-idempotent relative pseudomonad generalises the notion of a
lax-idempotent or Kock-Zöberlein 2-monad, discussed extensively in Kock
(1995). The aim of this section is to generalise the result of Lopez Franco
(2011) that every lax-idempotent 2-monad is pseudocommutative.

Definition

(Lax-idempotent relative pseudomonad, Fiore et al. 2018) Let T be a relative
pseudomonad along J ∶ D→ C. We say that T is a lax-idempotent relative
pseudomonad if ‘monad structure is left adjoint to unit’, which is to say that
we have an adjunction

(−)
∗

∶ C(JX ,TY )⇌ C(TX ,TY ) ∶ − ○ i

for all objects X ,Y of D, whose unit − Ô⇒ (−)
∗i has components given by

the ηf ∶ f → f ∗i from the pseudomonadic structure (note in particular that the
unit is thus invertible).
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Parameterised lax idempotency

Just as we defined the notion of a parameterised relative pseudomonad, we will
adjust the definition of lax idempotency for the 2-multicategorical setting.

Definition

(Parameterised lax-idempotent relative pseudomonad) Let T be a
parameterised relative pseudomonad along a multilinear pseudofunctor
J ∶ D→ C. We say T is a parameterised lax-idempotent relative pseudomonad
if the strength is left adjoint to precomposition with the unit. That is, we have
an adjunction

(−)
t
∶ C(B1, ..., JX , ...,Bn;TY )⇌ C(B1, ...,TX , ...,Bn;TY ) ∶ − ○t i

for 1 ≤ j ≤ n and objects B1, ..., JX , ...,Bn;TY whose unit − Ô⇒ (−)
t
○t i has

components
t̃f ∶ f → f t ○t i

obtained from the parameterised structure (again the unit is invertible).
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Example: the presheaf relative pseudomonad

The parameterised structure for the presheaf relative pseudomonad is defined
by the strengthening of a functor f ∶ B1, ...,Bj−1, JX ,Bj+1, ...,Bn → PshY being
the left Kan extension

B1, ...,X , ...,Bn B1, ...,PshX , ...,Bn

PshY

f ∗ ∶=Lan1,...,y,...,1 f

1,...,y,...,1

f

t̃f

along 1, ..., y , ...,1, and the 2-cell in the above diagram defines the map t̃f . But
this is exactly the statement that (−)t is left adjoint to − ○t y , and so Psh is a
parameterised lax-idempotent relative pseudomonad.
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Lax idempotent implies pseudocommutative

As a point of notation, we will use Greek letters to denote the counit of the lax
idempotency adjunction; where the strengthening map is called (−)t and the
unit t̃, the counit will be called

τg ∶ (g ○t i)
t
→ g ,

and where the strengthening is called (−)s and the unit s̃, the counit shall be
called

σg ∶ (g ○s i)
s
→ g .

Theorem

Let T ∶ D→ C be a parameterised lax-idempotent relative pseudomonad. Then
T is pseudocommutative, with a pseudocommutativity whose components
γg ∶ g

ts
→ g st are given by the composite

g ts (s̃g )
ts

ÐÐÐ→ (g s
○s i)

ts ∼
Ð→ (g st

○s i)
s

σgst

ÐÐ→ g st .
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Lax idempotent implies pseudocommutative

This theorem lets us deduce immediately that

Corollary

The relative pseudomonad Psh is pseudocommutative.

Combined with our earlier theorem, we find

Corollary

The relative pseudomonad Psh is a multilinear relative pseudomonad.
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Conclusion

We have the following implications:

T parameterised Ô⇒ T multilinear pseudofunctor,

T pseudocommutative Ô⇒ T multilinear pseudomonad, and

T parameterised lax-idempotent Ô⇒ T pseudocommutative.

From here I hope to explore:

the effect of closure, symmetry and braiding conditions,

when multilinear structure lifts to the Kleisli bicategory Kl(T) over a given
relative pseudomonad.
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