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1. Relative pseudomonads and their pseudoalgebras

Definition 1.1. Let C,D be bicategories and J : D → C a pseudofunctor. A
relative pseudomonad (T, i, ∗; η, µ, θ) along J comprises:

• for every object X ∈ D an object TX ∈ D and map iX : JX → TX in C,
and

• a family of functors (−)∗X,Y : C(JX, TY ) → C(TX, TY ) for X,Y ∈ D,

along with three families of invertible 2-cells:

• ηf : f → f∗i for f : JX → TY ,
• µf,g : (f∗g)∗ → f∗g∗ for f : JX → TY , g : JW → TX, and
• θX : i∗X → 1TX for X ∈ D,

such that the following two coherence diagrams commute:

(i) for f : JX → TY , g : JW → TX, h : JV → TW ,

(1)

((f∗g)∗h)∗ (f∗g)∗h∗

((f∗g∗)h)∗ (f∗g∗)h∗

(f∗(g∗h))∗ f∗(g∗h)∗ f∗(g∗h∗)

µf∗g,h

µf,gh
∗

∼

(µf,gh)
∗

∼

µf,g∗h f∗µg,h

(ii) for f : JX → TY ,

(2)

f∗ (f∗i)∗ f∗i∗

f∗1

∼

(ηf )
∗ µf,i

f∗θ

Definition 1.2. Let T be a relative pseudomonad along J : D → C. A pseudoal-
gebra (A, a; ã, â) comprises:

• an object A ∈ C,
• a family of functors (−)aX : C(JX,A) → C(TX,A) for X ∈ D,

along with two families of invertible 2-cells

• ãf : f → fai for f : JX → A,
• âf,g : (fag)a → fag∗ for f : JX → A, g : JW → TX,

such that the following two coherence diagrams commute:
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(i) for f : JX → A, g : JW → TX, h : JV → TW ,

(3)

((fag)ah)a (fag)ah∗

((fag∗)h)a (fag∗)h∗

(fa(g∗h))a fa(g∗h)∗ fa(g∗h∗)

âfag,h

âf,gh
∗

∼

(âf,gh)
a

∼

âf,g∗h faµg,h

(ii) for f : JX → A,

(4)

fa (fai)a fai∗

fa1

∼

(ãf )
a âf,i

faθ

Lemma 1.3. Let A be a pseudoalgebra over the relative pseudomonad T . Then for
f : JX → A, g : JW → TX, the diagram

(5)

fag (fag)ai (fag∗)i

fa(g∗i)

ã â

∼
faη

also commutes.

Proof. Since ã is a natural isomorphism, the required coherence is equivalent to

(fag)ai ((fag)ai)ai ((fag∗)i)ai

(fa(g∗i))ai

ã â

∼η

and so it suffices to show

(fag)a ((fag)ai)a ((fag∗)i)a

(fa(g∗i))a

ã â

∼η

commutes. Using this instance of equation (3)

((fag)ai)a ((fag∗)i)a (fa(g∗i))a

fa(g∗i)∗

(fag)ai∗ (fag∗)i∗ fa(g∗i∗)

â ∼

â

µ

∼

â

â



PS-PSH-ALG ≃ COC 3

the clockwise composite becomes

(fag)a ((fag)ai)a (fag)ai∗ (fag∗)i∗

fa(g∗i∗)

fa(g∗i)∗

(fa(g∗i))a

ã â â

∼

â−1

µ−1

and now using equation (4) we can replace the first two maps in the clockwise
composite to obtain:

(fag)a (fag)a1 (fag)ai∗ (fag∗)i∗

fa(g∗i∗)

fa(g∗i)∗

(fa(g∗i))a

â

∼

â−1

µ−1

∼ θ−1

which we fill in with four naturality squares, a bicategory coherences and relative
pseudomonad coherence (2):

(fag)a (fag)a1 (fag)ai∗

fag∗ (fag∗)1 (fag∗)i∗

fag∗ fa(g∗1) fa(g∗i∗)

fag∗ fa(g∗i)∗

(fag)a (fa(g∗i))a

â

∼

â−1

µ−1

∼ θ−1

θ−1

ââ

∼

∼

θ−1

η

η

â−1

∼

∼

Here the anticlockwise composite is equal to (faηg)
a, as desired. □

2. The presheaf relative pseudomonad

Write Cat for the 2-category of small categories, and write CAT for the 2-
category of locally-small categories. Since the category of presheaves on a small
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category is in general only locally small, it is natural to ask whether the presheaf
construction

X 7→ PshX := [Xop,Set]

can be given the structure of a relative pseudomonad along the inclusion 2-functor
J : Cat → CAT.

This is shown in [FGHW18] via the construction of a relative pseudoadjunction;
the structure of a relative pseudomonad is given to Psh as follows:

• for an object X ∈ Cat we have PshX ∈ CAT and unit map yX : X →
PshX given by the Yoneda embedding,

• for X,Y ∈ Cat and a functor f : X → PshY , the extension f∗ : PshX →
PshY is given by the left Kan extension of f along the Yoneda embedding

X PshX

PshY

y

f∗:=Lany f
f

ηf

which also defines the 2-cells ηf : f → f∗y (note that since the Yoneda
embedding is fully faithful the maps ηf are invertible, as required),

• for f : JX → TY and g : JW → TX, the 2-cell µf,g : (f∗g)∗ → f∗g∗ is
uniquely determined by the universal property of the left Kan extension:

W PshW W PshW

PshX PshX

PshY PshY

f∗

g

y

g∗

f∗g

y

(f∗g)∗

g∗

f∗

ηg

ηf∗g µf,g

• for X ∈ Cat, the 2-cell θX : y∗X → 1 is also uniquely determined by the
universal property of the left Kan extension:

X PshX X PshX

PshX PshX

y

y

1 y

y

i∗ 1
1 ηy θX

The presheaf construction being the free cocompletion, we expect that pseudoal-
gebras over Psh should be exactly the locally-small cocomplete categories.

Proposition 2.1. Let (A, a; ã, â) be a pseudoalgebra for the presheaf relative pseu-
domonad. Then A ∈ CAT is cocomplete, and the colimit of the diagram F : D → A
for D ∈ Cat is given by

colimF ∼= F a colimYD.

Proof. Define s := colimYD ∈ PshD (s standing for ‘singleton’, since it is the
terminal presheaf on D sending every d to a singleton set). Let A and F : D → A
be as hypothesised. Our proof proceeds as follows:

(1) Show that F as is the apex of a cocone under F .
(2) Given any cocone under F with apex Gt, construct a map zG : F as → Gt.
(3) Show that zG is a map of cocones.
(4) Show that if g : F as → Gt is a map of cocones parallel to zG, then g = zG.



PS-PSH-ALG ≃ COC 5

For (1), consider the colimit cocone under YD whose legs υd : Y d → colimY are
the colimit inclusions. Now for d ∈ D we can construct the composite

Fd
ã−→ F aY d

Faυd−−−→ F as.

Since the following diagram comprising a naturality square and the image under
F a of a cocone:

Fd Fd′

F aY d F aY d′

F as

Ff

Faυd Faυd′

FaY f

ã ã

commutes for all f : d → d′, these form the legs of the required cocone under F
with apex F as.

For (2), we begin by characterising cocones under F . Define Dt ∈ Cat to be the
category formed by freely adding a terminal object to D; that is,

obDt = obD ⊔ {t},

morDt = morD ⊔ {1t} ⊔ {d !d−→ t : d ∈ obD}.

We have an inclusion i : D → Dt, and functors G : Dt → A such that Gi = F
correspond exactly to cocones under F .

Let G : Dt → A be such a functor; we need to construct a map zG : F as → Gt.
Consider the following commutative diagram:

D PshD

Dt PshDt

A

Y

Y

G
Ga

Y i
(Y i)∗i

ηY i

ã

and consider the objects s ∈ PshD and Y t ∈ PshDt. Since t is terminal in Dt, Y t
is terminal in PshDt. Define the presheaf

X := (Y i)∗s

in PshDt (explicitly, this is the presheaf that sends objects d to singletons and t to
the empty set). Then we have a unique map

X
!−→ Y t

in PshDt. Applying the functor Ga to this map, we obtain

GaX
Ga!−−→ GaY t,

which we can compose with the following isomorphisms:

F as = (Gi)as (GaY i)as Ga(Y i)∗s GaY t GtGa!âã ã−1
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giving us a map F as → Gt, and this is how we define F as
zG−−→ Gt.

For (3), we need to show this is a map of cocones, which is to say that the
diagram

Fd Gid

F aY d

F as Gt

Faυd

ã

zG

G!

commutes. Writing out the definition of zG, we can fill this diagram with two
equalities and two natural transformations:

Fd Gid GaY id

F aY d (Gi)aY d (GaY i)aY d

F as (Gi)as (GaY i)as

Faυd

ã

ã

υdυd

ã

ã

ã

ã

as well as two naturality squares, pseudoalgebra coherence (5) and the image of a
unique map into Y t under Ga:

GaY id

(GaY i)aY d Ga(Y i)∗Y d GaY id Gid

(GaY i)as Ga(Y i)∗s GaY t Gt

G!

ã−1Ga!â

GaY !

ã−1

υd

η−1

υd

â

ã

Hence F as
zG−−→ Gt is a map of cocones.

This gives us that F as is a weak colimit for the diagram F ; it remains to do
(4) and show uniqueness. Let G : Dt → A correspond to a cocone under F , and
let g : F as → Gt be a map of cocones; we want to show that g = zG. Define
H : Dt → PshD as follows:

H : Dt → PshD

id 7→ Y d

t 7→ s

(id
!−→ t) 7→ (Y d

υd−→ s),

noting thatHi = YD. Then we can define a 2-cell β : F aH =⇒ G with components

βid : F aHid = F aY d
ã−1

−−→ Fd = Gid,

βt : F
aHt = F as

g−→ Gt;
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the only nontrivial naturality condition to check is

F aHid Gid

F aHt Gt

βid

G!FaH!

βt

and this expands to

F aY d Fd Gid

F as Gt

ã−1

Faυd

g

G!

which is precisely the condition that g is a map of cocones. Now, writing out the
definition of zG we obtain

F as (Gi)as (GaY i)as Ga(Y i)∗s GaY t Gtã−1Ga!âã

We use three naturality squares and pseudoalgebra coherence (5):

F aH∗(Y i)∗s F aH∗Y t

(F aH)a(Y i)∗s (F aH)aY t F aHt

Ga(Y i)∗s GaY t Gt
ã−1Ga!

β βt=gβ

(FaH)a!

ã−1

â−1 â−1

FaH∗!

η−1

along with four naturality squares and pseudoalgebra coherence (3):

F a(Hi)∗s F a(H∗Y i)∗s F aH∗(Y i)∗s

(F aHi)as (F aH∗Y i)as

(F aHi)as ((F aH)aY i)as (F aH)a(Y i)∗s

(Gi)as (GaY i)as Ga(Y i)∗s
âã

β β β

ã â

â−1

µ

â−1

â−1

η

η

â−1

and finally two equalities and pseudoalgebra coherence (4):

F as F aY ∗s F a(Hi)∗s

(F aY )as (F aHi)as

F as (Gi)as

β

â−1â−1

ã−1

θ−1

which allows us to rewrite the composite defining zG as:

F
a
s

θ−1
−−−→ F

a
Y

∗
s = F

a
(Hi)

∗
s

η−→ F
a
(H

∗
Y i)

∗
s

µ−→ F
a
H

∗
(Y i)

∗
s

FaH∗Y !−−−−−−−→ F
a
H

∗
Y t

η−1
−−−→ F

a
Ht

g−→ Gt.
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Now this is of the form

F as
Fa(...)−−−−→ F as

g−→ Gt

for some map s → s. But since s is terminal in PshD, the only such map is 1s.
Hence by functoriality we have

zG = g ◦ F a(1s) = g ◦ 1Fas = g.

So indeed the map of cocones F as → Gt is unique, which implies

F as = F a colimYD
∼= colimF.

Hence every presheaf pseudoalgebra A is cocomplete. □
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