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Monads

Definition

A monad in Kleisli presentation (T , i , ∗) on a category C comprises

for each object X in C, an object TX in C and unit map iX ∶ X → TX ,

for every map f ∶ X → TX its extension f ∗ ∶ TX → TX ,
satisfying the following three equations for all f ∶ Y → TZ , g ∶ X → TY :

f = f ∗iY ,

(f ∗g)∗ = f ∗g∗,

iX∗ = 1TX .

This presentation is equivalent to the usual one, in that each structure induces
the other.
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Relative monads

However, the definition of extension system does not reference iteration of the
action of T , and so it can be more easily generalised to the notion of a monad
along some base functor J ∶ C→ D.

Definition

(Relative monad, Altenkirch et al. 2014) A relative monad (T , i , ∗) along a
functor J ∶ D→ C comprises

for each object X in C, an object TX in D and unit map iX ∶ JX → TX ,

for every map f ∶ JX → TY an extension f ∗ ∶ TX → TY ,
satisfying the following three equations for all f ∶ JY → TZ , g ∶ JX → TY :

f = f ∗iY ,

(f ∗g)∗ = f ∗g∗,

iX∗ = 1TX .

This is identical to the previous slide’s definition up to the use of J to ensure
objects lie in the required category.
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Relative pseudomonads

We can categorify this definition, considering now 2-categories C and D.

Definition

(Relative pseudomonad, Fiore et al. 2018) A relative pseudomonad
(T , i , ∗;η,µ, θ) along a 2-functor J ∶ C→ D comprises

for each object X in C, an object TX in D and unit map iX ∶ JX → TX ,

for every X ,Y an extension functor between hom-categories

D(JX ,TY )
(−)

∗

ÐÐ→ D(TX ,TY ),

along with three invertible families of 2-cells:

ηf ∶ f → f ∗iY for f ∶ JY → TZ ,

µf ,g ∶ (f
∗g)∗ → f ∗g∗ for f ∶ JY → TZ , g ∶ JX → TY , and

θX ∶ i
∗

X → 1TX for X in C.
satisfying two coherence diagrams.
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Relative pseudomonads

These two coherence diagrams are:

((f ∗g)∗h)∗ (f ∗g)∗h∗

(f ∗g∗h)∗ f ∗(g∗h)∗ f ∗g∗h∗

f ∗ (f ∗i)∗ f ∗i∗

f ∗1

µ

µ

µ

µ

µ

θ

η µ

namely an associativity condition for µ and a unitality equation relating µ to
the units η and θ.
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Relative pseudomonads

Lemma

(Fiore et al. 2018) A relative pseudomonad furthermore satisfies the following
three coherence conditions:

f ∗g (f ∗g)∗i (i∗f )∗ i∗f ∗ i i∗i

f ∗g∗i f ∗ i

η

η

µ

µ

θ
θ

η

θ

The proof of this is analogous to showing the five original coherence axioms for
a monoidal category follow from the pentagon and triangle axioms.
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Example: The presheaf relative pseudomonad

The presheaf construction X ↦ PX cannot be given the structure of a
pseudomonad, since it is not an endofunctor (due to size issues). However, it
can be given the structure of a relative pseudomonad along the inclusion
J ∶ Cat→ CAT as follows:

the unit yX ∶ X → PX is given by the Yoneda embedding,

the extension of a functor f ∶ X → PY is given by the left Kan extension of
f along the Yoneda embedding

X PX

PY

y

f ∗ ∶=Lany f
f

ηf

which also defines the 2-cells ηf ∶ f → f ∗y .

the 2-cells µf ,g and θX are defined by the universal property of the left
Kan extension.
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Pseudoalgebras

A pseudoalgebra for a J-relative pseudomonad T ∶ C→ D (or simply a
T -pseudoalgebra) comprises

an object A ∈ D;
a family of functors (−)aX ∶ D[JX ,A]→ D[TX ,A] for X ∈ C;
a natural family of invertible 2-cells ãf ∶ f → f aiX for f ∶ JX → A in C:

JX A

TX
iX f a

f

ãf

a natural family of invertible 2-cells âf ,g ∶ (g
af )a → g af ∗ for f ∶ JX → TY

and g ∶ JY → A in D:

TX A

TY
f ∗ ga

(gaf )a

âf ,g

satisfying two coherence equations.
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Pseudoalgebras

These two coherence diagrams are:

((f ag)ah)∗ (f ag)ah∗

(f ag∗h)a f a(g∗h)∗ f ag∗h∗

f a (f ai)a f ai∗

f a1

â

â

µ

â

â

θ

ã â

which resemble very closely the two coherence diagrams for a relative
pseudomonad. We can make the precise with the notion of a free
pseudoalgebra.
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Free pseudoalgebras

For every object Y in C, there is a canonical pseudoalgebra structure on TY .
The algebra extension operation is given by the extension functor

D(JX ,TY )
(−)

∗

ÐÐ→ D(TX ,TY ),

while the families of 2-cells are given by the η and µ respectively—the required
two coherence conditions are then given exactly by a pseudomonad’s coherence
conditions.
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Further coherence

Lemma

For a T -pseudoalgebra A the following diagram

f ag (f ag)ai

g af ∗i

ã

η â

also commutes.

The proof is identical in form to the first of the three conditions in the previous
lemma.
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Morphisms

We define notions of morphism between pseudoalgebras.

Definition

A lax morphism from T -pseudoalgebra (A, a; ã, â) to (B, b; b̃, b̂) comprises a
morphism f ∶ A→ B in D along with a transformation

D[JX ,A] D[JX ,B]

D[TX ,A] D[TX ,B]

f −

(−)
b

(−)
a

f −

f̄

which amounts to a family of 2-cells

f̄g ∶ (fg)
b
→ fg a

satisfying two coherence conditions.

If f̄ is invertible, we say (h, f̄ ) is a pseudomorphism, and if it is an identity, we
say (f , f̄ ) is a strict morphism.
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Example

Given a T -pseudoalgebra (A, a; ã, â), for any X ∈ C and f ∶ JX → A the map
f a ∶ TX → A has a pseudomorphism structure given by

f ag = âf ,g ∶ (f
ag)a → f ag∗.

In this case, the two pseudomorphism coherence conditions become precisely
the two coherence conditions for a pseudoalgebra.
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2-cells and Alg(T )

An algebra 2-cell is a 2-cell f → g such that

(fg)b (kg)b

fg a kg a

α

k̄gf̄g

α

commutes.
Pseudoalgebras, pseudomorphisms and algebra 2-cells form a 2-category
Alg(T) (with lax or strict morphisms we denote the resulting 2-categories
Algl(T) and Algs(T) respectively).



Outline Background Pseudoalgebras The small-presheaf pseudomonad Lax idempotency COC is in Alg(P) Alg(P) is in COC Coda

The small-presheaf pseudomonad

It is possible the sidestep size issues with the presheaf construction differently.
On CAT we can define the small-presheaf pseudomonad Ps , which takes a
locally-small category X to the locally-small category PsX of small presheaves
(those which are small colimits of representable presheaves). Note that upon
composition with the inclusion J ∶ Cat→ CAT, Ps coincides with the
unrestricted presheaf construction P ∶ Cat→ CAT.
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Small-presheaf pseudoalgebras

Characterising pseudoalgebras for Ps is simple: if (A, a) is a Ps -pseudoalgebra,
the pseudoalgebra diagram

A PsA

A

y

a
1

∼

exhibits A as a reflective subcategory of the cocomplete category PsA, and so
A is cocomplete. Conversely, a cocomplete category A has a Ps -pseudoalgebra
structure given by

PsA→ A ∶ colim yf ↦ colim f

for f ∶ D → A a small diagram in A.
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The problem

One might therefore expect it to be similarly simple to prove that the
P-pseudoalgebras are also small-cocomplete categories. However, we
completely lack an analogue for the object PsA in the relative setting, so such a
proof is impossible.
Furthermore, at the heart of the previous proof is the following fact.

Proposition

(Kock, 1995) Let (T , i ,m) be a pseudomonad. Suppose that we have a
reflective adjunction

m ⊣ i .

Then for any T -pseudoalgebra (A, a) we also have a reflective adjunction

a ⊣ i .

We will say that in the ordinary setting, T is lax-idempotent if and only if it is
algebraically lax-idempotent.
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Lax idempotency

We define two notions of lax idempotency for relative pseudomonads.

Definition

(Fiore et al.) A relative pseudomonad (T , i , ∗) is lax-idempotent if we have an
adjunction

(−)
∗

⊣ − ○ i

for which η is the unit.

Definition

A relative pseudomonad (T , i , ∗) is algebraically lax-idempotent if for every
T -pseudoalgebra we have an adjunction

(−)
a
⊣ − ○ i

for which ã is the unit.
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The one-dimensional case

In one dimension, to be idempotent is for (−)∗ to be a bijection, while to be
algebraically idempotent is for (−)a to be a bijection for every algebra (A, a).

Proposition

In the relative setting, idempotent does not imply algebraically idempotent.

Since every 1-category is a 2-category, this will immediately imply that not
every lax-idempotent relative pseudomonad is algebraically lax-idempotent.



Outline Background Pseudoalgebras The small-presheaf pseudomonad Lax idempotency COC is in Alg(P) Alg(P) is in COC Coda

Idempotent /Ô⇒ algebraically idempotent

Proof.

Consider the three-object category C generated by the diagram

J T

A

i

gf

subject to fi = gi ∶= h. We have functors J,T ∶ 1→ C and T is a relative monad
with unit i and extension defined by i∗ = 1. Then T is idempotent since
∣[J,T ]∣ = ∣[T ,T ]∣ = 1.
However, A has two T -algebra structures sending h to f and g respectively ,
and yet ∣[J,A]∣ = 1 ≠ 2 = ∣[T ,A]∣. Hence T is not algebraically idempotent.
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Presheaf pseudoalgebras

Hence, although we have reflective adjunctions

(−)
∗

⊣ − ○ y

for the presheaf relative pseudomonad, we cannot yet conclude that for every
presheaf pseudoalgebra (A, a; ã, â) we have a reflective adjunction

(−)
a
⊣ − ○ y ,

or equivalently that the diagram

X PX

A

y

f a

f

ãf

exhibits f a as the left Kan extension of f along y . We will have to approach
P-pseudoalgebras differently.



Outline Background Pseudoalgebras The small-presheaf pseudomonad Lax idempotency COC is in Alg(P) Alg(P) is in COC Coda

Presheaf pseudoalgebras

In Fiore et al. (2018) it was established that the Kleisli bicategory of P is the
bicategory Prof of profunctors between small categories. We now give an
explicit characterisation of the Eilenberg-Moore 2-category.

Theorem

The 2-category Alg(P) is biequivalent to the 2-category of cocomplete
categories, cocontinuous functors and natural transformations.
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Cocomplete Ô⇒ algebra

Lemma

Let D,A ∈ CAT with D small and A cocomplete, let f ∶ D → A and g ∶ PD → A
be functors with g cocontinuous, and let α ∶ f → gy be an invertible natural
transformation. Then its transpose

α♯ ∶ Lany f → g

is also invertible.
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Cocomplete Ô⇒ algebra

Proposition

Suppose A ∈ CAT is cocomplete. Then A has the structure of a
P-pseudoalgebra.

Proof.

For f ∶ D → A define f a ∶ PD → A to be the left Kan extension of f along y
(which exists because A is cocomplete). Then we have a family of
isomorphisms ãf ∶ f → f ay given by the 2-cell part of the left Kan extension.
Define the other part of the pseudoalgebra structure âf ,g ∶ (f

ag)a → f ag∗ to be
the transpose of the invertible transformation

f ag
f aηg
ÐÐ→ f ag∗y ,

noting by the previous lemma that âf ,g is invertible.
One may check via transposes that the coherence conditions are satisfied.
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Cocontinuous Ô⇒ pseudomorphism

Proposition

Let f ∶ A→ B be a cocontinuous functor between cocomplete categories.
Giving A and B the P-pseudoalgebra structures as above, f becomes a
pseudomorphism of algebras.

Proof.

The 2-cell f̄g ∶ (fg)
b
→ fg a is define to be the transpose of the invertible 2-cell

f ãg ∶ fg → fg ay ,

noting by the same lemma as before that f̄g is invertible.
One may check via transposes that the coherence conditions are satisfied.

The inclusion of COC into Alg(P) is thus relatively straightforward. The other
direction will take more work.
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Algebra Ô⇒ cocomplete

Proposition

Let (A, a, ã, â) be a P-pseudoalgebra. Then its underlying object A ∈ CAT is
cocomplete; for a small diagram f ∶ D → A we have

colim f ≅ f a colim yD .

Consider the presheaf s ∶= colim yD ∈ PD; it is the terminal presheaf sending
every object of D to a singleton, and it has inclusion maps υd ∶ yd ↪ s for all d .
Our proof has the following structure:

1 We show that f as is the apex of a cocone c under f .

2 We characterise cocones g under f .

3 Given a cocone g under f , we construct a map of cocones zg ∶ f
as → gt.

4 We characterise maps of cocones from c to g .

5 We show that there is a unique such cocone for any g .
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(1) The cocone c under f

The composites

fd
(ãf )d
ÐÐÐ→ f ayd

f aυd
ÐÐ→ f as

form a cocone under f with apex f as; indeed, for any h ∶ d → d ′ the diagram

fd fd ′

f ayd f ayd ′

f as
f aυd

f aυd′

f ayh

fh

(ãf )d (ãf )d′

comprises a naturality square and the image of the colim y cocone under f a,
and thus commutes.
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(2) Cocones under f

Define a small category Dt as follows:

obDt
= obD ⊔ {t},

morDt
= morD ⊔ {1t} ⊔ {d

!d
Ð→ t ∶ d ∈ obD},

so that Dt is the category formed by freely adjoining a single terminal object to
D. Then we have an inclusion i ∶ D → Dt , and a correspondence between

functors g ∶ Dt
→ A such that gi = f , and

cocones under f .

The purpose of this correspondence is to be able to manipulate cocones under
f using the pseudoalgebra structure.
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(3) The map zg

Let g ∶ Dt
→ A be such a functor; we need to construct a map zg ∶ f

as → gt. In
the diagram below

D PD

Dt PDt

A

y

(yi)∗i

y

ga
g

η

ã

consider the objects s ∈ PD and
yt ∈ PDt . Since t is terminal in Dt , yt
is terminal in PDt . The presheaf
(yi)∗s is in PDt and by terminality we

have a unique map (yi)∗s
!
Ð→ yt in

PDt .

Applying the functor g a to this map, we obtain g a
(yi)∗s

ga!
Ð→ g ayt, with which

we can form the composite

f as = (gi)as
ã
Ð→ (g ayi)as

â
Ð→ g a

(yi)∗s
ga!
Ð→ g ayt

ã−1

Ð→ gt.

This gives us a map f as → gt, and this is how we define the desired zg .
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(2, cont.) The map zg is a map of cocones

We need to show that the diagram

fd gid

f ayd f as gt
f aυd

(ãf )d

zg

g !

commutes for all d ∈ obD. Indeed, we can fill this to create the following
commutative diagram:

fd gid g ayid

f ayd (gi)ayd (g ayi)ayd g a
(yi)∗yd g ayid gid

f as (gi)as (g ayi)as g a
(yi)∗s g ayt gt

g !

ã−1ga!â

gay !

ã−1

υd

η−1

υd

â

ã

ã

ã

ã

ã

υd

ã

υd

and so zg ∶ f
as → gt is indeed a map of cocones.
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(4) Cocone maps from c to g

Define a functor h ∶ Dt
→ PD by

hi ∶= y , h(d
!
Ð→ t) ∶= yd

υd
Ð→ s.

Take a cocone g and consider natural transformations β ∶ f ah → g for which

(β ⋅ i ∶ f ahi → gi) = (ã−1f ∶ f
ay → f ).

These are determined by their component βt , which must satisfy the naturality
condition

f ayd fd gid

f as gt

ã−1

f aυd

βt

g !

which states precisely that βt is a map of cocones from c to g . Hence we have
a correspondence between

natural transformations β ∶ f ah → g such that β ⋅ i = α−1, and

maps of cocones from c to g .
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(5) Uniqueness

Let β ∶ f ah → g be a map of cocones from c to g . We construct the following
commutative diagram:

f as

f a(hi)∗s (f ahi)as (gi)as

f a(h∗yi)∗s (f ah∗yi)as ((f ah)ayi)as (g ayi)as

f ah∗(yi)∗s (f ah)a(yi)∗s g a
(yi)∗s

f ah∗yt (f ah)ayt g ayt

f aht gt

ã−1

ga!

β

βt

β

(f ah)a!

ã−1

â−1

â−1

f ah∗!

η−1

µ

â−1 â−1

â

β

â

ã ã

ã−1=βi

η
â−1

η

θ−1
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(5, cont.) Uniqueness

The diagram demonstrates that the clockwise composite zg is equal to the
anticlockwise composite

f as
f aθ−1

ÐÐÐ→ f ay∗s = f a(hi)∗s
f aη
ÐÐ→ f a(h∗yi)∗s

f aµ
ÐÐ→ f ah∗(yi)∗s

f ah∗!
ÐÐ→ f ah∗yt

f aη−1

ÐÐÐ→ f aht
βt
Ð→ gt.

But by functoriality this composite is of the form

f as
f a(...)
ÐÐÐ→ f as

βt
Ð→ gt

for some map s → s. But since s is terminal in PD, the only such map is 1s .
Hence again by functoriality we have

zg = βt f
a
(1s) = βt1f as = βt .

So indeed the map of cocones zg ∶ f
as → gt is unique, which implies

f as ≅ colim f .

Hence every presheaf pseudoalgebra (A, a; ã, â) is cocomplete.
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Pseudomorphism Ô⇒ Cocontinuous

Corollary

Let (f , f̄ )∶ (A, a; ã, â)→ (B, b; b̃, b̂) be a pseudomorphism of P-pseudoalgebras.
Then f preserves all small colimits, in that

f colimg ≅ colim fg

for D ∈ CAT and g ∶ D → A. In particular, f a preserves all colimits for any
f ∶ D → A.

Proof.

We have the following chain of natural isomorphisms:

f colimg
∼

Ð→ fg a colim y
f̄ −1g
ÐÐ→ (fg)b colim y

∼

Ð→ colim fg ,

where the isomorphisms marked ∼ exist by the previous theorem.
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P is Algebraically Lax-idempotent After All

Corollary

The presheaf construction is algebraically lax-idempotent.

Proof.

Let (A, a; ã, â) be a P-pseudoalgebra. Let D ∈ Cat and f ∶ D → A. Then
f a ∶ PD → A preserves all small colimits by the previous corollary and f ay is
isomorphic to f . Since PD is the free cocompletion of D, f a is therefore the
left Kan extension of f along y (Kelly, 1982).
So P is algebraically lax-idempotent.
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Coda

The last result gives us hope that there might be a more conceptual proof that
Alg(P) is COC. For example, there might be abstract properties of the
inclusion J ∶ Cat→ CAT that force Alg(P) to be biequivalent to Alg(Ps)—in
one dimension, it is enough for the relative monad to be along a dense functor
(Arkor 2022).
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