Outline Background Pseudoalgebras 0 000000 0000000

ebras The sma

The small-presheaf pseudomonad 00

Lax idempotency 0000

COC is in Alg(P)

Alg(P) is in COC 0000000000

Cod O

Presheaf Algebras are Cocomplete Categories

Andrew Slattery

UoM CT Seminar, 6th November 2023

Outline	Background	Pseudoalgebra
•	000000	0000000

oalgebras The

The small-presheaf pseudomonad 00

Lax idempotency 0000

COC is in Alg(P)

Alg(P) is in COC 0000000000

Outline

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Background: relative pseudomonads
- ② The 2-category of pseudoalgebras over a relative pseudomonad
- ③ Sidebar I: the small-presheaf pseudomonad
- ④ Sidebar II: lax idempotency
- ⑤ Theorem I: cocomplete categories are presheaf pseudoalgebras
- Integration II: presheaf pseudoalgebras are cocomplete categories

sheaf pseudomonad La

Lax idempotency 0000

COC is in Alg(P)

Alg(P) is in COC 0000000000

Monads

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition

A monad in Kleisli presentation (T, i, *) on a category $\mathbb C$ comprises

- for each object X in \mathbb{C} , an object TX in \mathbb{C} and unit map $i_X : X \to TX$,
- for every map f: X → TX its extension f*: TX → TX, satisfying the following three equations for all f: Y → TZ, g: X → TY:

$$f = f^* i_Y,$$

 $(f^*g)^* = f^*g^*,$
 $i_X * = 1_{TX}.$

This presentation is equivalent to the usual one, in that each structure induces the other.

Outline O	Background O●OOOO	Pseudoalgebras 0000000	The small-presheaf pseudomonad 00	Lax idempotency 0000	COC is in Alg(P) 00000	Alg(P) is in COC	C
Relat	tive mor	nads			UNIVI	ERSITY OF LEEDS	

However, the definition of extension system does not reference iteration of the action of T, and so it can be more easily generalised to the notion of a monad *along* some base functor $J : \mathbb{C} \to \mathbb{D}$.

Definition

(Relative monad, Altenkirch et al. 2014) A relative monad (T, i, *) along a functor $J : \mathbb{D} \to \mathbb{C}$ comprises

- for each object X in \mathbb{C} , an object TX in \mathbb{D} and unit map $i_X : JX \to TX$,
- for every map $f : JX \to TY$ an extension $f^* : TX \to TY$, satisfying the following three equations for all $f : JY \to TZ$, $g : JX \to TY$:

 $f = f^* i_Y,$ (f*g)* = f*g*, $i_X * = 1_{TX}.$

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

This is identical to the previous slide's definition up to the use of J to ensure objects lie in the required category.

Outline	Background	Pseudoalgebras	Т
0	000000	0000000	C

Lax idempotency 0000

COC is in Alg(P)

Alg(P) Alg(P) is in COC 000000000 Cod

Relative pseudomonads

We can categorify this definition, considering now 2-categories $\mathbb C$ and $\mathbb D.$

Definition

(Relative pseudomonad, Fiore et al. 2018) A *relative pseudomonad* $(T, i, ^*; \eta, \mu, \theta)$ along a 2-functor $J : \mathbb{C} \to \mathbb{D}$ comprises

- for each object X in \mathbb{C} , an object TX in \mathbb{D} and unit map $i_X : JX \to TX$,
- for every X, Y an extension functor between hom-categories $\mathbb{D}(JX, TY) \xrightarrow{(-)^*} \mathbb{D}(TX, TY),$

along with three invertible families of 2-cells:

•
$$\eta_f: f \to f^* i_Y$$
 for $f: JY \to TZ$,
• $\mu_{f,g}: (f^*g)^* \to f^*g^*$ for $f: JY \to TZ$, $g: JX \to TY$, and
• $\theta_X: i_X^* \to 1_{TX}$ for X in \mathbb{C} .

satisfying two coherence diagrams.

Outline O	Background 000€00	Pseudoalgebras 0000000	The small-presheaf pseudomonad 00	Lax idempotency 0000	COC is in Alg(P) 00000	Alg(P) is in COC	Cor
						Ê	

Relative pseudomonads

These two coherence diagrams are:

namely an associativity condition for μ and a unitality equation relating μ to the units η and $\theta.$

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	Co
O	0000€0	0000000	00	0000	00000		O

Relative pseudomonads

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Lemma

(Fiore et al. 2018) A relative pseudomonad furthermore satisfies the following three coherence conditions:

The proof of this is analogous to showing the five original coherence axioms for a monoidal category follow from the pentagon and triangle axioms.

Example: The presheaf relative pseudomonad

The presheaf construction $X \mapsto PX$ cannot be given the structure of a pseudomonad, since it is not an endofunctor (due to size issues). However, it can be given the structure of a relative pseudomonad along the inclusion $J: Cat \rightarrow CAT$ as follows:

- the unit $y_X : X \to PX$ is given by the Yoneda embedding,
- the extension of a functor $f: X \to PY$ is given by the left Kan extension of f along the Yoneda embedding

$$X \xrightarrow{y} PX$$

$$\downarrow f^* := \operatorname{Lan}_y f$$

$$PY$$

which also defines the 2-cells $\eta_f : f \to f^* y$.

• the 2-cells $\mu_{f,g}$ and θ_X are defined by the universal property of the left Kan extension.

UNIVERSITY OF LEEDS

Outline	Background	Pseudoalgebras	Th
С	000000	000000	00

e small-presheaf pseudomonad Lax idempotency

COC is in Alg(P)

Alg(P) is in COC

Pseudoalgebras

UNIVERSITY OF LEEDS

A *pseudoalgebra* for a *J*-relative pseudomonad $T : \mathbb{C} \to \mathbb{D}$ (or simply a

- T-pseudoalgebra) comprises
 - an object $A \in \mathbb{D}$:
 - a family of functors $(-)_X^a : \mathbb{D}[JX, A] \to \mathbb{D}[TX, A]$ for $X \in \mathbb{C}$:
 - a natural family of invertible 2-cells $\tilde{a}_f : f \to f^a i_X$ for $f : JX \to A$ in \mathbb{C} :

• a natural family of invertible 2-cells $\hat{a}_{f,g}: (g^a f)^a \to g^a f^*$ for $f: JX \to TY$ and $g: JY \to A$ in \mathbb{D} :

satisfying two coherence equations.

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	C
O	000000	0●00000	OO	0000	00000	0000000000	
Pseu	doalgeb	ras			UNIV		

These two coherence diagrams are:

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

which resemble very closely the two coherence diagrams for a relative pseudomonad. We can make the precise with the notion of a free pseudoalgebra.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	
O	000000	00€0000	OO	0000	00000	0000000000	
Free	pseudoa	algebras			UNIVI		

For every object Y in \mathbb{C} , there is a canonical pseudoalgebra structure on TY.

For every object Y in \mathbb{C} , there is a canonical pseudoalgebra structure on TY. The algebra extension operation is given by the extension functor

$$\mathbb{D}(JX,TY)\xrightarrow{(-)^*}\mathbb{D}(TX,TY),$$

while the families of 2-cells are given by the η and μ respectively—the required two coherence conditions are then given exactly by a pseudomonad's coherence conditions.

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Outline	Background	Pseudoalgebras
0	000000	0000000

gebras The s

The small-presheaf pseudomonad 00

Lax idempotency 0000 COC is in Alg(P)

Alg(P) is in COC 0000000000

Further coherence

Lemma

For a T-pseudoalgebra A the following diagram

also commutes.

The proof is identical in form to the first of the three conditions in the previous lemma.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC
O	000000	0000●00	00	0000	00000	0000000000

Morphisms

We define notions of morphism between pseudoalgebras.

Definition

A lax morphism from T-pseudoalgebra $(A, {}^{a}; \tilde{a}, \hat{a})$ to $(B, {}^{b}; \tilde{b}, \hat{b})$ comprises a morphism $f : A \to B$ in \mathbb{D} along with a transformation

which amounts to a family of 2-cells

$$\bar{f}_g: (fg)^b \to fg^a$$

satisfying two coherence conditions.

If \overline{f} is invertible, we say (h, \overline{f}) is a *pseudomorphism*, and if it is an identity, we say (f, \overline{f}) is a *strict morphism*.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC
O	000000	00000●0	00	0000	00000	
						÷ m

Example

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Given a *T*-pseudoalgebra $(A, {}^{a}; \tilde{a}, \hat{a})$, for any $X \in \mathbb{C}$ and $f : JX \to A$ the map $f^{a} : TX \to A$ has a pseudomorphism structure given by

$$\overline{f^a}_g = \hat{a}_{f,g} : (f^a g)^a \to f^a g^*.$$

In this case, the two pseudomorphism coherence conditions become precisely the two coherence conditions for a pseudoalgebra.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	0
O	000000	000000●	00	0000	00000	0000000000	
• •		(\mathbf{T})					

2-cells and Alg(I)

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

An algebra 2-cell is a 2-cell $f \rightarrow g$ such that

commutes

Pseudoalgebras, pseudomorphisms and algebra 2-cells form a 2-category Alg(T) (with lax or strict morphisms we denote the resulting 2-categories $Alg_{I}(T)$ and $Alg_{s}(T)$ respectively).

Outline	Background	Pseudoalgebras
0	000000	0000000

The small-presheaf pseudomonad •O Lax idempotency 0000

y COC is in Alg(P) 00000 Alg(P) is in COC 0000000000 Coda

The small-presheaf pseudomonad

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

It is possible the sidestep size issues with the presheaf construction differently. On CAT we can define the small-presheaf pseudomonad P_s , which takes a locally-small category X to the locally-small category P_sX of small presheaves (those which are small colimits of representable presheaves). Note that upon composition with the inclusion $J: \text{Cat} \rightarrow \text{CAT}$, P_s coincides with the unrestricted presheaf construction $P: \text{Cat} \rightarrow \text{CAT}$.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	Co
O	000000	0000000	O●	0000	00000	0000000000	
						÷.	

Small-presheaf pseudoalgebras

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

Characterising pseudoalgebras for P_s is simple: if (A, a) is a P_s -pseudoalgebra, the pseudoalgebra diagram

exhibits A as a reflective subcategory of the cocomplete category P_sA , and so A is cocomplete. Conversely, a cocomplete category A has a P_s -pseudoalgebra structure given by

 $P_s A \rightarrow A$: colim $yf \mapsto$ colim f

for $f: D \rightarrow A$ a small diagram in A.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	Co
O	000000	0000000	00	●000	00000	0000000000	O
The	problem				UNIVE		

One might therefore expect it to be similarly simple to prove that the P-pseudoalgebras are also small-cocomplete categories. However, we completely lack an analogue for the object P_sA in the relative setting, so such a proof is impossible.

Furthermore, at the heart of the previous proof is the following fact.

Proposition

(Kock, 1995) Let (T, i, m) be a pseudomonad. Suppose that we have a reflective adjunction

 $m \dashv i$.

Then for any T-pseudoalgebra (A, a) we also have a reflective adjunction

a ⊣ *i*.

We will say that in the ordinary setting, T is lax-idempotent if and only if it is algebraically lax-idempotent.

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC
O	000000	0000000	00	0●00	00000	0000000000
Lax i	dempote	ency			UNIVE	RSITY OF LEEDS

We define two notions of lax idempotency for relative pseudomonads.

Definition

(Fiore et al.) A relative pseudomonad (T, i, *) is *lax-idempotent* if we have an adjunction

$$(-)^* \dashv - \circ i$$

for which η is the unit.

Definition

A relative pseudomonad (T, i, *) is *algebraically lax-idempotent* if for every *T*-pseudoalgebra we have an adjunction

$$(-)^a \dashv - \circ i$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

for which \tilde{a} is the unit.

Outline O	Background 000000	Pseudoalgebras 0000000	The small-presheaf pseudomonad 00	Lax idempotency 00●0	COC is in Alg(P) 00000	Alg(P) is in COC	C
						â	

The one-dimensional case

In one dimension, to be idempotent is for $(-)^*$ to be a bijection, while to be algebraically idempotent is for $(-)^a$ to be a bijection for every algebra (A, a).

Proposition

In the relative setting, idempotent does not imply algebraically idempotent.

Since every 1-category is a 2-category, this will immediately imply that not every lax-idempotent relative pseudomonad is algebraically lax-idempotent.

Idempotent \implies algebraically idempotent

Proof.

Consider the three-object category ${\ensuremath{\mathbb C}}$ generated by the diagram

subject to fi = gi := h. We have functors $J, T : 1 \to \mathbb{C}$ and T is a relative monad with unit i and extension defined by $i^* = 1$. Then T is idempotent since |[J, T]| = |[T, T]| = 1. However, A has two T-algebra structures sending h to f and g respectively, and yet $|[J, A]| = 1 \neq 2 = |[T, A]|$. Hence T is not algebraically idempotent.

 $J \xrightarrow{i} T$

UNIVERSITY OF LEEDS

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	C
O	000000	0000000	00	0000	●0000	0000000000	
	_					ि मा	

Presheaf pseudoalgebras

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Hence, although we have reflective adjunctions

$$(-)^* \dashv - \circ y$$

for the presheaf relative pseudomonad, we *cannot* yet conclude that for every presheaf pseudoalgebra $(A, {}^{a}; \tilde{a}, \hat{a})$ we have a reflective adjunction

$$(-)^a \dashv - \circ y,$$

or equivalently that the diagram

exhibits f^a as the left Kan extension of f along y. We will have to approach P-pseudoalgebras differently.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC
O	000000	0000000	00	0000	0●000	
						â

Presheaf pseudoalgebras

Coda

In Fiore et al. (2018) it was established that the Kleisli bicategory of P is the bicategory Prof of profunctors between small categories. We now give an explicit characterisation of the Eilenberg-Moore 2-category.

Theorem

The 2-category Alg(P) is biequivalent to the 2-category of cocomplete categories, cocontinuous functors and natural transformations.

・ロト (四) (ボン・(ボン・(ロ))

Outline	Background 000000	Pseudoalgebras 0000000	l he small-presheaf pseudomonad OO	Lax idempotency 0000	COC is in Alg(P) OO●OO	Alg(P) is in COC 00000000000	C
Cocc	mploto		bra		UNIV		

Cocomplete \implies algebra

Lemma

Let $D, A \in CAT$ with D small and A cocomplete, let $f : D \rightarrow A$ and $g : PD \rightarrow A$ be functors with g cocontinuous, and let $\alpha : f \rightarrow gy$ be an invertible natural transformation. Then its transpose

 $\alpha^{\sharp}: \operatorname{Lan}_{v} f \to g$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

is also invertible.

Outline O	Background 000000	Pseudoalgebras 0000000	The small-presheaf pseudomonad 00	Lax idempotency 0000	COC is in Alg(P) 000€0	Alg(P) is in COC	0
Coco	mploto		abra		UNIV		

Cocomplete \implies algebra

Suppose $A \in CAT$ is cocomplete. Then A has the structure of a P-pseudoalgebra.

Proof.

For $f: D \to A$ define $f^a: PD \to A$ to be the left Kan extension of f along y (which exists because A is cocomplete). Then we have a family of isomorphisms $\tilde{a}_f: f \to f^a y$ given by the 2-cell part of the left Kan extension. Define the other part of the pseudoalgebra structure $\hat{a}_{f,g}: (f^ag)^a \to f^ag^*$ to be the transpose of the invertible transformation

$$f^ag \xrightarrow{f^a\eta_g} f^ag^*y,$$

noting by the previous lemma that $\hat{a}_{f,g}$ is invertible.

One may check via transposes that the coherence conditions are satisfied.

$Cocontinuous \implies pseudomorphism$

Proposition

Let $f : A \rightarrow B$ be a cocontinuous functor between cocomplete categories. Giving A and B the P-pseudoalgebra structures as above, f becomes a pseudomorphism of algebras.

Proof.

The 2-cell $\bar{f}_{g}: (fg)^{b} \to fg^{a}$ is define to be the transpose of the invertible 2-cell

$$f\,\tilde{a}_g:fg\to fg^ay,$$

noting by the same lemma as before that \bar{f}_{σ} is invertible. One may check via transposes that the coherence conditions are satisfied.

The inclusion of COC into Alg(P) is thus relatively straightforward. The other direction will take more work.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	Co
O	000000	0000000	00	0000	00000	●000000000	O
٨١٣٥	hra —	cocomp	lata		UNIV		

Algebra \implies cocomplete

Let $(A, a, \tilde{a}, \tilde{a})$ be a P-pseudoalgebra. Then its underlying object $A \in CAT$ is cocomplete; for a small diagram $f: D \rightarrow A$ we have

 $\operatorname{colim} f \cong f^a \operatorname{colim} y_D.$

Consider the presheaf $s := \operatorname{colim} y_D \in PD$; it is the terminal presheaf sending every object of D to a singleton, and it has inclusion maps $v_d : yd \to s$ for all d. Our proof has the following structure:

- (1) We show that $f^a s$ is the apex of a cocone c under f.
- We characterise cocones g under f.
- 3 Given a cocone g under f, we construct a map of cocones $z_g: f^a s \to gt$.
- 4 We characterise maps of cocones from c to g.
- We show that there is a unique such cocone for any g.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	C
O	000000	0000000	00	0000	00000	0●00000000	

(1) The cocone c under f

The composites

$$fd \xrightarrow{(\tilde{a}_f)_d} f^a yd \xrightarrow{f^a v_d} f^a s$$

form a cocone under f with apex f^as ; indeed, for any $h: d \rightarrow d'$ the diagram

comprises a naturality square and the image of the colim y cocone under f^a , and thus commutes.

・ロト・西ト・山田・山田・山口・

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC
O	000000	0000000	00	0000	00000	
(2) (Cocones	under <i>f</i>			UNIVI	ERSITY OF LEEDS

Define a small category D^t as follows:

ob $D^t = \text{ob } D \sqcup \{t\},$ mor $D^t = \text{mor } D \sqcup \{1_t\} \sqcup \{d \xrightarrow{!_d} t : d \in \text{ob } D\},$

so that D^t is the category formed by freely adjoining a single terminal object to D. Then we have an inclusion $i: D \to D^t$, and a correspondence between

- functors $g: D^t \to A$ such that gi = f, and
- cocones under f.

The purpose of this correspondence is to be able to manipulate cocones under f using the pseudoalgebra structure.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

Let $g: D^t \to A$ be such a functor; we need to construct a map $z_g: f^* s \to gt$. In the diagram below

$$D \xrightarrow{y} PD$$

$$i \downarrow \xrightarrow{\eta} \downarrow (yi)^{*}$$

$$D^{t} \xrightarrow{y} PD^{t}$$

$$g \xrightarrow{\tilde{a}} \downarrow g^{a}$$

$$A$$

consider the objects $s \in PD$ and $yt \in PD^t$. Since t is terminal in D^t , ytis terminal in PD^t . The presheaf $(yi)^*s$ is in PD^t and by terminality we have a unique map $(yi)^*s \xrightarrow{!} yt$ in $P\mathbb{D}^t$.

Applying the functor g^a to this map, we obtain $g^a(yi)^* s \xrightarrow{g^a_!} g^a yt$, with which we can form the composite

$$f^{a}s = (gi)^{a}s \xrightarrow{\tilde{a}} (g^{a}yi)^{a}s \xrightarrow{\hat{a}} g^{a}(yi)^{*}s \xrightarrow{g^{a}!} g^{a}yt \xrightarrow{\tilde{a}^{-1}} gt.$$

This gives us a map $f^a s \rightarrow gt$, and this is how we define the desired z_g .

- ロマ・山マ・山田・山田・山口

(2, cont.) The map z_g is a map of cocones

We need to show that the diagram

commutes for all $d \in \text{ob } D$. Indeed, we can fill this to create the following commutative diagram:

and so $z_g: f^a s \to gt$ is indeed a map of cocones.

UNIVERSITY OF LEEDS

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency
O	000000	0000000	OO	0000

Alg(P) is in COC

is in Alg(P)

(4) Cocone maps from c to g

Define a functor $h: \mathbb{D}^t \to PD$ by

$$hi \coloneqq y, \ h(d \xrightarrow{!} t) \coloneqq yd \xrightarrow{\upsilon_d} s.$$

Take a cocone g and consider natural transformations $\beta : f^a h \rightarrow g$ for which

$$(\beta \cdot i : f^{a}hi \rightarrow gi) = (\tilde{a}_{f}^{-1} : f^{a}y \rightarrow f).$$

These are determined by their component $\beta_t,$ which must satisfy the naturality condition

which states precisely that β_t is a map of cocones from c to g. Hence we have a correspondence between

- natural transformations $\beta : f^a h \to g$ such that $\beta \cdot i = \alpha^{-1}$, and
- maps of cocones from c to g.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC
O	000000	0000000	00	0000	00000	00000000000
(-)						∎ E

(5) Uniqueness

UNIVERSITY OF LEEDS

Coda

Let $\beta : f^{a}h \rightarrow g$ be a map of cocones from c to g. We construct the following commutative diagram:

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	(
O	000000	0000000	00	0000	00000	0000000●00	
						े बि	

(5, cont.) Uniqueness

UNIVERSITY OF LEEDS

The diagram demonstrates that the clockwise composite z_g is equal to the anticlockwise composite

$$f^{a}s \xrightarrow{f^{a}\theta^{-1}} f^{a}y^{*}s = f^{a}(hi)^{*}s \xrightarrow{f^{a}\eta} f^{a}(h^{*}yi)^{*}s \xrightarrow{f^{a}\mu} f^{a}h^{*}(yi)^{*}s$$
$$\xrightarrow{f^{a}h^{*}!} f^{a}h^{*}yt \xrightarrow{f^{a}\eta^{-1}} f^{a}ht \xrightarrow{\beta_{t}} gt.$$

But by functoriality this composite is of the form

$$f^{a}s \xrightarrow{f^{a}(\ldots)} f^{a}s \xrightarrow{\beta_{t}} gt$$

for some map $s \rightarrow s$. But since s is terminal in *PD*, the only such map is 1_s . Hence again by functoriality we have

$$z_g = \beta_t f^a(1_s) = \beta_t 1_{f^a s} = \beta_t.$$

So indeed the map of cocones $z_g: f^a s \rightarrow gt$ is unique, which implies

$$f^a s \cong \operatorname{colim} f$$
.

Hence every presheaf pseudoalgebra $(A, {}^{a}; \tilde{a}, \hat{a})$ is cocomplete.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	C
O	000000	0000000	OO	0000	00000	00000000●0	
Pseu	domorpl	hism \implies	Cocontinuous		UNIVI	ERSITY OF LEEDS	

Corollary

Let $(f, \overline{f}): (A, {}^{a}; \widetilde{a}, \widehat{a}) \to (B, {}^{b}; \widetilde{b}, \widehat{b})$ be a pseudomorphism of P-pseudoalgebras. Then f preserves all small colimits, in that

 $f \operatorname{colim} g \cong \operatorname{colim} fg$

for $D \in CAT$ and $g : D \rightarrow A$. In particular, f^a preserves all colimits for any $f : D \rightarrow A$.

Proof.

We have the following chain of natural isomorphisms:

$$f \operatorname{colim} g \xrightarrow{\sim} fg^{a} \operatorname{colim} y \xrightarrow{\overline{f}_{g}^{-1}} (fg)^{b} \operatorname{colim} y \xrightarrow{\sim} \operatorname{colim} fg,$$

where the isomorphisms marked \sim exist by the previous theorem.

Outline	Background	Pseudoalgebras	The small-presheaf pseudomonad	Lax idempotency	COC is in Alg(P)	Alg(P) is in COC	Coc
O	000000	0000000	OO	0000	00000	000000000●	

P is Algebraically Lax-idempotent After All

Corollary

The presheaf construction is algebraically lax-idempotent.

Proof.

Let $(A, {}^{a}; \tilde{a}, \hat{a})$ be a *P*-pseudoalgebra. Let $D \in \text{Cat}$ and $f: D \to A$. Then $f^{a}: PD \to A$ preserves all small colimits by the previous corollary and $f^{a}y$ is isomorphic to *f*. Since *PD* is the free cocompletion of *D*, f^{a} is therefore the left Kan extension of *f* along *y* (Kelly, 1982). So *P* is algebraically lax-idempotent.

UNIVERSITY OF I

Outline	Background	Pseudoalgebras
0	000000	0000000

algebras The

The small-presheaf pseudomonad OO

Lax idempotency 0000

COC is in Alg(P)

Alg(P) is in COC 0000000000 Coda

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

The last result gives us hope that there might be a more conceptual proof that Alg(P) is COC. For example, there might be abstract properties of the inclusion $J: Cat \rightarrow CAT$ that force Alg(P) to be biequivalent to $Alg(P_s)$ —in one dimension, it is enough for the relative monad to be along a dense functor (Arkor 2022).