Pseudocommutativity and Lax Idempotency for Relative Pseudomonads

Andrew Slattery University of Leeds mmawsl@leeds.ac.uk

Relative Pseudomonads

Definition 1.1. (Relative pseudomonad) Let \mathbb{C}, \mathbb{D} be 2-categories and let $J : \mathbb{D} \to \mathbb{C}$ be a 2-functor. A relative pseudomonal $(T, i, *; \eta, \mu, \theta)$ along J comprises

• for $X \in ob \mathbb{D}$ an object $TX \in ob \mathbb{C}$ and map $i_X : JX \to TX$ (called a *unit map*), and • for $X, Y \in \text{ob } \mathbb{D}$ a functor

 $\mathbb{C}(JX,TY) \xrightarrow{(-)^*} \mathbb{C}(TX,TY)$

Definition 1.2. (2-multicategory) A 2-multicategory \mathbb{C} is a multicategory enriched in Cat. Unwrapping this statement a little, a 2-multicategory \mathbb{C} is given by

1. a collection of objects $X \in ob \mathbb{C}$, together with

2. a category of multimorphisms $\mathbb{C}(X_1, ..., X_n; Y)$ for all $n \geq 0$ and objects $X_1, ..., X_n, Y$ which we call a *hom-category*; an object of the hom-category $\mathbb{C}(X_1, ..., X_n; Y)$ is denoted by $f: X_1, \dots, X_n \to Y$,

3. an identity multimorphism functor $\mathbf{1}_X : \mathbb{H} \to \mathbb{C}(X; X) : * \mapsto 1_X$ for all $X \in ob \mathbb{C}$, and 4. composition functors

(called an *extension functor*).

The units and extensions furthermore come equipped with three families of 2-cells

• $\eta_f: f \to f^*i_X$ for $f: JX \to TY$,

• $\mu_{f,q}: (f^*g)^* \to f^*g^*$ for $g: JX \to TY, f: JY \to TZ$, and

• $\theta_X : (i_X)^* \to 1_{TX} \text{ for } X \in \text{ob } \mathbb{D},$

satisfying two coherence conditions.

Pseudocommutativity 2

Definition 2.1. (Strong relative pseudomonad) Let \mathbb{C} and \mathbb{D} be 2-multicategories and let $J: \mathbb{D} \to \mathbb{C}$ be a (unary) 2-functor between them. A strong relative pseudomonal $(T, i, {}^t; \tilde{t}, \hat{t}, \theta)$ along J comprises:

• for every object X in \mathbb{D} an object TX in \mathbb{C} and unit map $i_X : JX \to TX$,

• for every n, index $1 \leq i \leq n$, objects $B_1, \ldots, B_{i-1}, B_{i+1}, \ldots, B_n$ in \mathbb{C} and objects X, Y in \mathbb{D} a functor

 $\mathbb{C}(B_1, \dots, B_{i-1}, JX, B_{i+1}, \dots, B_n; TY) \xrightarrow{(-)^{t_i}} \mathbb{C}(B_1, \dots, B_{i-1}, TX, B_{i+1}, \dots, B_n; TY)$

called the *strength* (in the *i*th argument) and which is pseudonatural in all arguments, along with three natural families of invertible 2-cells:

• $t_f: f \to f^{t_j} \circ_j i$,

 $\mathbb{C}(X_1, ..., X_n; Y) \times \mathbb{C}(W_{1,1}, ..., W_{1,m_1}; X_1) \times ... \times \mathbb{C}(W_{n,1}, ..., W_{n,m_n}; X_n)$

 $\rightarrow \mathbb{C}(W_{1,1}, \dots, W_{n,m_n}; Y)$ $(f, q_1, \dots, q_n) \mapsto f \circ (q_1, \dots, q_n)$

for all arities $n, m_1, ..., m_n$ and objects $Y, X_1, ..., X_n, W_{1,1}, ..., W_{n,m_n}$ in \mathbb{C} . where the identity and composition functors satisfy the usual associativity and identity axioms for an enrichment.

Definition 2.3. (Pseudocommutative monad) Let T be a strong relative pseudomonad. We say that T is *pseudocommutative* if for every pair of indices $1 \le j < k \le n$ and map

 $f: B_1, ..., B_{i-1}, JX, B_{i+1}, ..., B_{k-1}, JY, B_{k+1}, ..., B_n \to TZ$

we have an invertible 2-cell

 $\gamma_f: f^{t_k t_j} \to f^{t_j t_k}: B_1, \dots, TX, \dots, TY, \dots, B_n \to TZ$

which is pseudonatural in all arguments and which satisfies five coherence conditions (two

• $\hat{t}_{f,q}: (f^{t_j} \circ_j g)^{t_{j+k-1}} \to f^{t_j} \circ_j g^{t_k}$, and

 $\bullet \theta_X : (i_X)^{t_1} \to 1_{TX}$

for $f: B_1, ..., JX, ..., B_n \to TY$ and $g: C_1, ..., JW, ..., C_m \to TX$, satisfying two coherence conditions.

Proposition 2.2. Let T be a strong relative pseudomonad along multicategorical 2functor $J: \mathbb{D} \to \mathbb{C}$. Then T is a pseudo-multifunctor $T: \mathbb{D} \to \mathbb{C}$, defining the action of T on 1-cells by the functors

 $\mathbb{D}(X_1, \dots, X_n; Y) \xrightarrow{(i_Y \circ J -)^{t_1 t_2 \dots t_n}} \mathbb{C}(TX_1, \dots, TX_n; TY),$

so that for $f: X_1, ..., X_n \to Y$ we have

 $Tf := (i_V \circ Jf)^{t_1 t_2 \dots t_n} = \bar{f}^{t_1, \dots, t_n} : TX_1, \dots, TX_n \to TY.$

for t, two for t, and a braiding condition).

Definition 2.4. (Multicategorical relative pseudomonad) Let \mathbb{C}, \mathbb{D} be 2-multicategories and let T be a relative pseudomonad along $J : \mathbb{D} \to \mathbb{C}$. We say T is a *multicategorical* relative pseudomonad if

• T is a pseudo-multifunctor, and

• The unit and extension of T are compatible with the multicategorical structure.

Theorem 2.5. Let T be a strong relative pseudomonad along multicategorical 2-functor $J: \mathbb{D} \to \mathbb{C}$. Suppose T is pseudocommutative. Then T is a multicategorical relative pseudomonad.

Lax Idempotency 3

Definition 3.1. (Lax-idempotent strong relative pseudomonad) Let $J : \mathbb{D} \to \mathbb{C}$ be a pseudo-multifunctor and let T be a strong relative pseudomonad along J. We say T is a lax-idempotent strong relative pseudomonad if the strength is left adjoint to precomposition with the unit. That is, we have an adjunction

$$\mathbb{C}(B_1,...,JX,...,B_n;TY) \xrightarrow{(-)^{t_j}} \mathbb{C}(B_1,...,TX,...,B_n;TY)$$

for every $1 \leq j \leq n$ and objects $B_1, \ldots, B_{j-1}, JX, B_{j+1}, \ldots, B_n; TY$ whose unit $- \implies$

Theorem 3.2. Let $T : \mathbb{D} \to \mathbb{C}$ be a lax-idempotent strong relative pseudomonad. Then T is pseudocommutative, with a pseudocommutativity whose components $\gamma_q: g^{ts} \to g^{st}$ are given by the composite

$$g^{ts} \xrightarrow{(\tilde{s}_g)^{ts}} (g^s \circ_s i)^{ts} \xrightarrow{\sim} (g^{st} \circ_s i)^s \xrightarrow{\sigma_{g^{st}}} g^{st}.$$

 $(-)^{t_j} \circ_i i$ has components $\tilde{t}_f: f \to f^{t_j} \circ_i i_X$

obtained from the strong structure (again the unit is invertible).

References

- Thosten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors. Logical Methods in Computer Science, 11(1), 2015. ACU15
- Nathanael Arkor and Dylan McDermott. The formal theory of relative monads, 2023. https://arxiv.org/abs/2302.14014. [AM23]
- [FGHW18] Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. Relative pseudomonads, Kleisli bicategories, and substitution monoidal structures. Selecta Mathematica, 24(3):2791-2830, 2018.
- [HP02]Martin Hyland and John Power. Pseudo-commutative monads and pseudo-closed 2-categories. Journal of Pure and Applied Algebra, 175(1):141–185, 2002.
- Anders Kock. Monads on symmetric monoidal closed categories. Archiv der Mathematik, 21:1–10, 1970. |Koc70|
- [Ló11]Ignacio López Franco. Pseudo-commutativity of KZ 2-monads. Advances in Mathematics, 228(5):2557–2605, 2011.
- $\left[PS23 \right]$ Hugo Paquet and Philip Saville. Strong pseudomonads and premonoidal bicategories, 2023. https://arxiv.org/abs/2304.11014.